Abstract
Previously, we demonstrated that enforced activation of STAT5 in human cord blood (CB)-derived stem/progenitor cells results in enhanced long-term stem cell self-renewal and impaired myelopoiesis (
J.J.Schuringa et al, J.Exp.Med. 2004;200:623
). Now, C/EBPα was identified as a critical transcription factor that is downregulated by STAT5. Affymetrix microarray analysis on STAT5A(1*6)-transduced CD34+ cells identified C/EBPα as the most prominently downregulated gene (−3.3 fold), and these data were confirmed by RT-PCR and Western blotting. To determine the cell-biological relevance of these observations, a 4-OHT-inducible C/EBPα-ER protein was co-expressed with the STAT5A(1*6) mutant in CB CD34+ cells by using a retroviral approach. Re-expression of C/EBPα in STAT5A(1*6) cells resulted in a marked restoration of myelopoiesis as determined by morphological analyses, FACS analyses for myeloid markers such as CD11b, CD14 and CD15, and RT-PCR for myeloid-restricted genes such as g-csfr. While enforced activation of STAT5A resulted in accelerated erythropoiesis, this was blocked when C/EBPα was re-introduced into STAT5A(1*6) cells. Similarly, the proliferative advantage imposed on CD34+ cells by STAT5A(1*6) depended on the downmodulation of C/EBP as reintroduction of C/EBPα in these cells induced a quick cell cycle arrest and the onset of myeloid differentiation. At the stem/progenitor cell level, LTC-IC frequencies were elevated from 0.5% to 11% by STAT5A(1*6) as compared to controls, but these elevated LTC-IC frequencies were strongly reduced when C/EBPα was reintroduced in STAT5A(1*6) cells. Enumeration of progenitors in methylcellulose assays revealed similar results, the number of CFCs was reduced over 10-fold when C/EBPα was expressed in STAT5A(1*6) cells. Also, secondary CAFCs and long-term cultures could only be generated from STAT5A(1*6) expressing cells, but not from cells that co-expressed STAT5A(1*6) and C/EBPα. Taken together, these data indicate that STAT5-induced self-renewal and impaired myelopoiesis involves downmodulation of C/EBPα.Author notes
Corresponding author
2005, The American Society of Hematology
2005
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal