Abstract
Acute promyelocytic leukemia (APL) cells are blocked at the promyelocyte stage of myeloid differentiation. The majority of APL cells display the t(15;17) reciprocal chromosomal translocation leading to the expression of the fusion protein promyelocytic leukemia-retinoic acid receptor alpha (PML-RARa). Cells harboring this reciprocal translocation can be induced to differentiate after treatment with all-trans retinoic acid (at-RA) both in vivo and in vitro. During normal hematopoiesis, differentiation is regulated by several key transcription factors. One of them, CCAAT/enhancer binding protein alpha (C/EBPa), controls expression of genes regulating normal myeloid differentiation. Its disruption leads to a block of granulocytic differentiation. We thus hypothesize that C/EBPa could be deregulated in APL and therefore participate in the pathogenesis of APL. Using the U937PR9 cell line, which expresses an inducible PML-RARa, we observed that expression of PML-RARa induced a decrease of both C/EBPa mRNA and protein, leading to decreased C/EBPa DNA binding activity. Using a transient transfection assay with a C/EBPa promoter construct in presence or absence of PML-RARa, we are able to demonstrate that PML-RARa can repress C/EBPa promoter activity. This repression is specific to the fusion protein, as both PML and RARa have no effect upon the C/EBPa promoter. A computer search of the C/EBPa promoter sequence did not exhibit any evident RARE binding site, and therefore we are currently mapping the site(s) responsible for this repression. In conclusion, PML-RARa down regulates C/EBPa expression; this down regulation could participate in the pathogenesis of APL. This hypothesis is also supported by the observation that at-RA treatment of APL cell lines (NB4 and HT93) induces a rapid restoration of both C/EBPa RNA and protein. Thus, a decrease in both C/EBPa expression and activity could contribute to the differentiation block of APL cells by deregulating the normal myeloid differentiation program.
Author notes
Corresponding author
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal