Abstract
Clonal chromosome abnormalities represent one of the most important prognostic factors in adult acute myeloid leukemia (AML), and cytogenetic data are used for risk-adapted treatment strategies. By conventional cytogenetic analysis, approximately 50% of patients lack clonal chromosome aberrations, and normal cytogenetics are associated with an intermediate clinical outcome. This clinically heterogeneous group seems to be in part characterized by molecular markers, such as MLL, FLT3, CEBPA, and NPM1 mutations.
In order to identify novel candidate regions of genomic imbalances, we applied comparative genomic hybridization to microarrays (matrix-CGH). Using this high-resolution genome-wide screening approach we analyzed 49 normal karyotype AML cases characterized for the most common clinically relevant molecular markers (MLL-PTD n=13, FLT3-ITD n=7, FLT3-ITD/NPM1+ n=4, MLL-PTD/FLT3-ITD n=3, CEBPA+ n=12, CEBPA+/FLT3-ITD n=1; CEBPA+/NPM1+ n=1; no molecular markers n=8) with a microarray platform consisting of 2799 different BAC or PAC clones. A set of 1500 of these clones covers the whole human genome with a physical distance of approximately 2 Mb. The remaining 1299 clones either contiguously span genomic regions known to be frequently involved in hematologic malignancies (e.g., 1p, 2p, 3q, 7q, 9p, 11q, 12q, 13q, 17p, 18q) (n=600) or contain oncogenes or tumor suppressor genes (n=699).
In addition to known copy number polymorphisms in 5q11, 7q22, 7q35, 14q32, and 15q11, the CLuster Along Chromosomes method (CLAC; http://www-stat.stanford.edu/~wp57/CGH-Miner) disclosed copy number alterations (CNAs) in terms of gains in 1p, 11q, 12q, and 17p. CNAs in terms of losses were identified in 9p, 11q, 12p, 12q, and 13q. Two-class supervised analyses using the significance analysis of microarrays (SAM) method identified for the MLL-PTD cases a gain of a single clone harboring the MLL gene.
While the significance of these findings, which are currently validated using fluorescence in-situ hybridization (FISH), still remains to be determined, our preliminary results already demonstrate the power and reliablity of this microarray-based technique allowing genome-wide screens of genomic imbalances as the MLL aberration was detected in all cases known to have a MLL-PTD. Furthermore, ongoing correlation of high-resolution genomic profiling with global gene expression studies will help to disclose pathways underlying normal karyotype AML, thereby leading to new insights of leukemogenesis.
Author notes
Corresponding author
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal