Abstract
Background: Cytomegalovirus (CMV) disease constitutes a serious complication after allogeneic peripheral blood stem cell transplantation (allo-PBSCT). For the clearance of CMV, CD8+ T cells are pivotal. Patients after allo-PBSCT with recurrent CMV reactivation usually lack such CMV specific T cells. Conventional antiviral therapy of CMV reactivation characteristically results in myelosuppression and further suppression of CMV specific T cells. Adoptive transfer of CMV specific T cells may help to overcome this problem. A novel technology designated “streptamers” allows the selection of CMVpp65 specific CD8+ T cell up to 98% purity without altering the functional properties of the selected T cells and without requiring cumbersome and time consuming T cell cultures.
Materials and Methods: Here, the novel streptamer technology was used for adoptive transfer of CMV specific T cells into two acute leukemia patients with recurrent high CMV antigenemia after allo-PBSCT. Standard peripheral blood mononuclear cell apheresis was performed on the former stem cell donors of two patients with acute leukemia. Isolation of CMV specific donor lymphocytes was performed using a Good Manufacturing Product (GMP)-grade Streptamer selection kit on a CliniMacs™ device. Briefly, MHC-Streptamers (CMVpp65/HLA-B7 for patient 1; CMVpp65/HLA-A2 for patient 2) were labeled with beads overnight to obtain MHC-streptamer-bead complexes. Subsequently CMV specific T-lymphocytes were immunomagnetically labeled by incubating mononuclear cells with MHC-Streptamer-bead complexes. Cells were run on a CliniMacs™ device. The positive fraction was then incubated with biotin to detach the steptamers from the T cells.
Results: A single specific donor lymphocyte infusion (sDLI) of 0.4 or 2.2 ×105 CMVpp65 specific T cells per kg body weight was performed in an AML or ALL patient respectively, after allogeneic PBSCT developing a CMVpp65 antigenemia with a maximum of 959 or 716 CMVpp65 positive/500,000 cells and treatment with foscarnet, ganciclovir and valganciclovir. After sDLI, the CMV antigenemia was cleared and remained persistently controlled even after discontinuation of valganciclovir therapy in both patients. No acute or chronic toxic side effect, particularly no aggravation of graft-versus-host disease (GvHD) was observed. A strong and sustained increase of the absolute count of CMV-specific CD8+ T cells in concordance with the increase of CD3+CD8+ T cells up to 440/μl was detected. CMV-specific CD8+ T cells showed no significant expression of CCR7, CD62L or CD107, but stained increasingly positive for CD45RA, indicating a preferential effector T cell phenotype. Results from stimulation experiments of CD3+ T cells with HLA-B7 versus HLA-A2 restricted CMVpp65 derived peptides demonstrate late reconstitution of HLA-A2-restricted CMV-specific T cells, whereas the adoptively transferred HLA-B7-restricted CMV-specific T-cell response augmented very early und was maintained over time.
The chimerism analysis of the in vivo expanded CMV-specific CD8+ T cells demonstrated a 100% donor chimerism. T cell receptor excision circle (sjTRECs) analysis revealed a frequency of sjTRECs two logs lower than expected, indicating peripheral expansion rather than thymic proliferation of CMV specific CD8+ T cells. cDNA generated from FACS-purified donor-derived CMV B7 pp65-specific CD8+ T cells was probed with the indicated 5′ Vß14-specific and 3′ CDR3-specific primers for the presence of clonotypic T cells. The respective CDR3 region sequence was identical for both donor T cells and CMVpp65 specific T cells in the patients at different time points after the adoptive T cell transfer, thus clearly indicating that the expanded CMV specific T cell were of clonogenic donor origin.
Conclusion: Streptamer technology offers the advantage of selecting CMV specific CD8+ T cells at GMP level for adoptive T cell transfer. Two CMVpp65 specific T cell transfers resulted in a marked increase of CMV-specific CD8+ T cells and induced long-lasting CD8+ T cell responses, which allowed the patients to discontinue toxic antiviral drug therapy without further high level reactivation of CMV.
Disclosures: Germeroth:Stage Pharmaceuticals Ltd.: Employment.
Author notes
Corresponding author
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal