Abstract
• Hypomethylating agents like 5-Azacytidine (5Aza) have become an effective therapy for myelodysplastic syndromes (MDS) and show promise in acute myeloid leukemia (AML). In AML, complimentary mechanisms including epigenetic silencing of growth controlling genes, i.e. tumor suppressors, and activation of kinases contribute to malignant transformation. In order to enhance the therapeutic potential of epigenetic therapies, we developed a high-throughput RNA interference (HT-RNAi) platform for large-scale transient gene silencing in acute myeloid leukemia cells. This assay allows for the first time to individually silence hundreds or thousands of genes in combination with 5Aza to identify molecular targets whose inhibition enhances the anti-leukemic effect of hypomethylating agents. As part of assay development for HT-RNAi, ten AML cell lines were used to determine the median inhibitory concentration (IC50) of 5Aza for each AML cell lines. Furthermore, the ten cell lines were tested with a panel of cationic lipid transfection reagents at varying weight to volume (wt:vol) ratios to determine the optimal siRNA transfection conditions. Results from these studies identified two AML cell lines TF1 and ML4, which were advanced into kinome-epigenetic RNAi screens.
Using a lipid-based method, cells were reverse transfected for 48hrs with 2 different siRNA sequences per gene targeting a total of 572 kinases. After 48hrs, 5Aza at the calculated IC25 was added for an additional 72 hrs and cell proliferation was measured using a luminescence-based assay. Data was background corrected and analyzed using the B-score method to report the strength and statistical significance of growth inhibition compared to controls. A B-score of <−2 indicates statistical significance with p<0.05 (>95% confidence); a B-score <−1.5 provides >87% confidence and was used as lowest cutoff given that screens are focused and contain validated siRNA to kinases. Analysis of two independent RNAi kinome screens, one in TF1 and the other in ML4, in combination with 5Aza, identified six and eleven kinases respectively whose silencing by two different siRNA sequences (2× coverage) potentiated the effects of 5Aza at B-score <−1.5. In ML4 cells 2 kinases were highly significant with a B-score for both siRNA <−2. Six kinases were common targets in both cell lines with significant growth inhibition at a B-score for both siRNA of at least <−1.5 making these kinases potential important modifiers of response to 5Aza.
In summary, initial kinome RNAi screens in myeloid cells identified specific kinases as potential sensitizing targets to hypomethylating agents. Moreover, functional genomic RNAi screens provide a fast and attractive approach to identify molecular targets in AML for the rational development of combination therapies with hypomethylating agents as well as other drug classes.
Disclosures: No relevant conflicts of interest to declare.
Author notes
Corresponding author
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal