Abstract
Chromosomal translocations involving the Mixed-Lineage-Leukemia (MLL) gene on chromosome 11q23 are frequent in infant acute leukemia and give rise to the formation of MLL-fusion genes. Several studies have addressed the importance of MLL-fusion activity for the initiation and maintenance of hematopoietic transformation. However, the dependence of established leukemias on MLL-fusion activity has not been previously addressed. We have developed a model for conditional expression of MLL-ENL in hematopoietic progenitor cells, in which expression of the fusion oncogene is turned off by doxycycline. In this study, immortalized myeloid cells conditionally or constitutively expressing the MLL-ENL fusion gene were used to induce acute myeloid leukemia (AML) in vivo. Primary recipients developed AML with a mean latency of 81.4 (±4.8) days. Secondary recipients developed AML with much shorter latencies than primary recipients regardless of whether the leukemic cells were freshly transplanted (26.8 (±6.8) days) or cultured in vitro for one month prior to transplantation (18 (±3.9) days). Genetic analysis revealed that some leukemic cells had acquired gross chromosomal abnormalities such as trisomy 6 or gains and losses of chromosome regions, which were not detected in the immortalised cells from which they were derived. Despite the acquisition of additional genetic abnormalities, the leukemic cells remained dependent upon MLL-ENL expression in vitro and in vivo. The leukemic cells terminally differentiated into neutrophils upon doxycycline treatment in vitro and established leukemias regressed following administration of doxycycline to recipient mice in their drinking water. Leukemic regression was accompanied by the complete loss of leukemic cells from the peripheral blood and differentiation of leukemic cells in the spleen. In 7 out of 34 doxycycline treated mice, remission was not sustained and the leukemias relapsed. However, most of these were shown to have acquired constitutive expression of MLL-ENL. This study demonstrates that leukemic cells are addicted to MLL-ENL expression and suggests that targeting the transcriptional/signalling networks established by MLL-fusion oncogenes in patients with 11q23 rearrangements would be a major therapeutic advance.
Disclosures: No relevant conflicts of interest to declare.
S.J.H. and V.W-V. contributed equally to this work
Sarah J. Horton’s present address: Department of Hematology, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
Author notes
Corresponding author
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal