Abstract
MicroRNA, an abundant class of small endogenous RNAs, regulate target genes through inducing translational inhibition and cleavage of targeted transcripts. To date, microRNAs have been implicated in normal biological processes, including development, cell differentiation, apoptosis and proliferation as well as in malignant transformation. However, their role in multiple myeloma (MM) remains unknown. Here we investigated role of microRNAs in myelomagenesis, and their influence on prognosis and clinical outcome. We evaluated profiles of 384 microRNAs in bone marrow derived CD138+ plasma cells (PC) from 79 uniformly treated MM patients, 11 MM cell lines and 9 healthy donors using qRT-PCR based microRNA array. The relative expression was calculated using comparative Ct method, and data was normalized using endogenous controls and analyzed using SDS, RQ manager, R and dChip softwares. MicroRNA expression profiles detected in MM patients were correlated with clinical outcome measures. We observed significant modulate expression of 61 microRNAs in myeloma cells compared to normal plasma cells. When more stringent criteria were used, we identified 24 differentially expressed microRNAs in patient samples. Further, unsupervised hierarchical clustering of filtered microRNAs, based on their DCt values, identified two major groups within the MM population (groups A and group B). Samples of Group A clusters with MM cell lines, indicating more proliferative nature of MM patient cells. Within B group, a second degree node group B2, clusters with normal plasma cells indicating more indolent course, while patients in an additional node B1 represented an assorted pattern. The unsupervised clustering of all MM samples showed consistent changes in miR-30b, -30c, -30d, -142-5p, -24, -191, -181d, -374, -146b, -140, -145, -125a, -151, -223, -155, let7b, indicative of a role of these microRNA in myelomagenesis; while supervised analysis of samples within groups A and B identified modulated expression of different sets of miRNAs. In group A miR-585 and let-7f were upregulated 8–12 fold, while miRs -125a, -126, -155, -223, -146a, -374 -19a, -20a, -26a, -30a -5p, -30b, and -30d were significantly downregulated; in group B, all differentially expressed microRNAs were downregulated (p<0.001) compared to normal plasma cells. These modulated miRNAs target critical signaling pathways including apoptosis, hematopoietic cell differentiation and proliferation, survival and angiogenesis by upregulating function of HOX9, c-myc, VCAM-1, Bcl-2, E2F1, SHP1, SHP2, VEGF, and DUSp6 molecules. We further analyzed the effect of microRNA on clinical outcome. We have observed significantly superior event free and overall survival of patients in group B2 compared to patients in group A (2 yr estimated EFS 79% versus 54% respectively; p=0.05; and 2 yr estimated OS 94% versus 70% respectively; p =0.017). Taken together this data identifies critical microRNAs as modulators of gene expression and signaling pathways and provides potential novel microRNA and gene targets in MM to both understand biological behavior and for therapeutic application.
Disclosures: No relevant conflicts of interest to declare.
Author notes
Corresponding author
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal