Abstract
Abstract 27
Patients with hemophilia A have a congenital deficiency of the factor VIII (fVIII) protein due to a mutation in the fVIII gene that frequently leads to absence of detectable expression of fVIII. Accordingly, the therapeutic replacement fVIII protein potentially is recognized as non-self by the immune system. Thirty percent of patients with severe hemophilia A develop detectable inhibitory anti-fVIII antibodies (inhibitors). Additionally, greater than 90 percent of hemophilia A mice treated with human fVIII develop inhibitors using dosing schedule that mimics use in humans. Because fVIII is an immunologically foreign protein, it might be expected that a hemophilia A patient would make a fVIII inhibitor. However, intravenous injection of soluble proteins in either humans or rodents usually results in tolerance rather than a humoral immune response. One major difference between fVIII and other proteins is that it is released from its large carrier protein von Willebrand factor (VWF) and is potentially exposed to the immune system at sites of active hemostasis and inflammation. Heat-inactivated, denatured fVIII, which maintains all T-cell epitopes but lacks several B-cell epitopes, is less immunogenic than native fVIII, suggesting that fVIII-dependent thrombin generation along the intrinsic pathway of blood coagulation may provide co-stimulatory signals necessary for the immune response (Skupsky BS, Zhang A, Scott DW Blood 2008; 112:1220a). We constructed a B domain-deleted human fVIII mutant, designated fVIIIi, which contains alanine substitutions at two critical thrombin cleavage sites, Arg372 and Arg1689, and purified it to homogeneity. FVIIIi does not develop procoagulant activity and is not released from VWF in response to thrombin. Therefore fVIIIi is less likely than wild-type fVIII to be exposed to the immune system at sites of active hemostasis and inflammation. Additionally, VWF binds to the immunodominant fVIII C2 domain and potentially hides part of fVIII from the immune system. FVIIIi was antigenically intact judging from intact binding to a panel of11 mouse anti-fVIII monoclonal antibodies whose epitope specificity was represented by all five domains of BDD fVIII. The immunogenicity of wild-type fVIII and fVIIIi was compared in a murine hemophilia A model in which groups of 25 mice received 8 weekly injections of physiologic doses of fVIII. Plasma was collected weekly for total anti-fVIII antibody titers by ELISA and one week following the last injection for total anti-fVIII antibody titers, inhibitor titers by Bethesda assay and for epitope mapping. Mice treated with fVIIIi had significantly lower levels of inhibitory as well as total anti-fVIII antibodies than mice treated with wild-type fVIII. Domain mapping using single human domain hybrid human/porcine molecules as ELISA antigens revealed that hemophilia A mice broadly recognized all fVIII domains in response to either wild-type or fVIIIi, although fVIIIi produced less anti-light chain antibodies. Mice in both the wild-type fVIII and fVIIIi groups produced antibodies that recognized the phospholipid-binding site of the C2 domain, even though this site overlaps the VWF binding site on fVIII. There was no difference in the isotype spectrum of the antibodies made to fVIII or fVIIIi. This study indicates that inactivatable fVIII is less immunogenic than native fVIII and suggests that the immunogenicity of fVIII is related either to its interaction with VWF or to events triggered by activation of the coagulation mechanism.
No relevant conflicts of interest to declare.
Author notes
Asterisk with author names denotes non-ASH members.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal