Abstract
Abstract 3857
Poster Board III-793
The chemokine receptor CXCR4 and its ligand CXCL12 are involved in the development and progression of a diverse number of hematological malignancies, including leukemia, lymphoma and multiple myeloma (MM). Binding CXCL12 to CXCR4 activates a variety of intracellular signal transduction pathways and effector molecules that regulate cell chemotaxis, adhesion, survival, apoptosis and proliferation. It was previously shown that CXCR4 signaling can directly induce caspase-independent cell apoptosis through the interaction with the HIV gp120 envelope protein. In the present study we investigated the effect of CXCR4 specific antagonists 4F-benzoyl-TN14003 (T140) and AMD3100 on the survival and proliferation of different human hematological cancer cells. Here, we demonstrate that T140, but not AMD3100, exhibits preferential cytotoxicity towards malignant cells of hematopoietic origin, as compared to primary normal cells or solid prostate and breast tumor cells. The in vitro treatment with T140, but not with AMD3100, significantly decreased the number of viable chronic myeloid leukemia K562 cells, acute T cell leukemia Jurkat cells, acute promyelocytic leukemia NB4 and HL60 cells, and four different MM cell lines (U266, NCI-H929, RPMI8226 and ARH77), demonstrating the highest sensitivity to T140 (p<0.01). Notably, T140 inhibited the growth of freshly isolated leukemia and MM cells obtained from consenting patients. T140 inhibits the growth of MM and leukemic cells by inducing their apoptotic cell death. The apoptotic changes in the cells were associated with morphological changes, phosphatidylserine externalization, sub-G1 arrest, DNA double-stranded breaks, decrease in mitochondrial membrane potential, release of cytochrome c, and caspase 3 activation. The important role of CXCR4 in T140-mediated cell death was confirmed by demonstrating that CXCR4 over-expression in NB4 and K562 cells increased their sensitivity to T140. Furthermore, pretreatment of NB4 and HL60 cells with AMD3100 abolishes the effect of T140 on these cells, indicating the involvement of CXCR4 in T140-induced apoptosis. Importantly, the combination with novel anti-myeloma agent bortezomib significantly augments anti-myeloma activity of T140. The anti leukemic and MM effect of T140 was confirmed in xenograft in vivo tumor models. Subcutaneous (s.c.) or intra-peritoneal (i.p.) injections of T140 (100 or 300 mcg/mouse) significantly reduced, in a dose-dependent manner, the tumor size in immuno-deficient mice that were previously inoculated s.c. with human acute leukemia cells NB4 or MM cells RPMI8226 (p<0.01). Tumors from animals treated with T140 had smaller sizes and weights, larger necrotic areas and high apoptotic scores. Taken together, these data support the unique anti-cancer effect of T140 in hematological malignancies and indicate the potential therapeutic role of T140 in MM and leukemia patients.
No relevant conflicts of interest to declare.
Author notes
Asterisk with author names denotes non-ASH members.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal