Abstract 3974

Acute lymphoblastic leukemia (ALL) is the most common form of hematologic malignancy in children. In spite of significant advances achieved in the treatment of childhood ALL, one fifth of these patients still relapse after the standard treatment. Moreover, relapse ALL is the second most common cause of cancer-related deaths in children. The development of novel therapies is prevented by a limited understanding of the exact pathobiology. There are emerging evidences that the transcription factor KLF4 has a tumor suppressor property in ALL. Recently, a gene expression classifier study in pediatric precursor B-cell ALL (pre-B ALL) showed that KLF4 expression was significantly reduced in high risk ALL patients with positive MRD after induction. This finding suggests a possible role of this cell cycle inhibitor on the development, expansion and drug-resistant of leukemic cells. Several studies demonstrate that overexpression of KLF4 in normal B cells and BCR transformed B cells show increased apoptosis and reduced proliferation. Furthermore, we recently described that KLF4 inhibits proliferation of naïve lymphocytes by activating p21 (Yamada, et al, 2009). Sulphoraphane (SF; 4-methylsulfonylbutyl isothiocyanate) is a dietary compound derived from Cruciferae vegetables with anti-carcinogenic activity in colon cancer by upregulating KLF4 and p21 among other genes. Thus, we hypothesized that SF could also exhibit anti-leukemic activity in human-derived acute lymphoblastic leukemia cells via the activation of KLF4. The pre-B ALL cell lines (Nalm6, REH, RS-4, SUP-B15) and an EBV transformed B cell line were treated with different concentrations of SF (0-40 μM) for 24–48 hours. Then, cell number was estimated using an ATP-based viability method. Flow cytometric analysis of ANNEXIN-V/7-AAD binding as well as CFSE dilution was used to measure apoptosis and proliferation respectively. We found that SF induced cytotoxicity in Nalm-6, REH and RS-4 cell lines in a dose and time dependent manner. This cytotoxic effect was less pronounced in EBV-transformed B cell line. SF treatment led to increased ANNEXIN-V and 7-AAD positive cells (82% apoptotic cells in SF-treated versus 9% in DMSO control). Further, SF-treated cells displayed significantly less proliferation in comparison to DMSO controls thus suggesting that SF inhibits cellular proliferation. Preliminary data also suggest that SF-mediated apoptosis is caused by upregulation of KLF4. In conclusion, Sulphoraphane exhibits an anti-leukemic property by inducing apoptosis and abrogating proliferation in pre-B ALL cell lines. Thus, sulphoraphane could potentially be used as an adjunctive therapy in a subgroup of pre-B ALL patients who have decreased expression of KLF4.

Disclosures:

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution