Abstract
Abstract SCI-27
Iron metabolism is regulated in mammals to assure that adequate iron is delivered to the hematopoietic system to support erythropoiesis. In systemic iron metabolism, regulation of both iron uptake from the diet and release from erythrophagocytosing macrophages is coordinated by action of the peptide hormone, hepcidin, which inhibits activity of the iron exporter, ferroportin. In general, high expression of hepcidin diminishes duodenal iron uptake and reduces macrophage iron release, a combination observed in the anemia of chronic disease. Low expression of hepcidin, which is synthesized by hepatocytes and influenced by transferrin receptor 2, HFE, hemojuvelin and bone morphogenetic receptors, facilitates iron uptake. Mutations affecting genes in the hepcidin pathway cause hemochromatosis, characterized by systemic iron overload that affects mainly hepatocytes and cardiac myocytes, but spares the CNS. In contrast, there are several degenerative diseases of the CNS in which neuronal iron overload is prominent and may play a causal role. The underlying pathophysiologies of neuronal brain iron accumulation syndromes remain unclear, even though several causal genes have been identified, including pantothenate kinase 2 and aceruloplasminemia. In some cases, increased iron may be inaccessible, and cells may suffer from functional iron insufficiency, as we propose for animals that lack iron regulatory protein 2. It is also possible that errors in subcellular iron metabolism can lead to mitochondrial iron overload and concomitant cytosolic iron deficiency, a combination observed in Friedreich ataxia, ISCU myopathy, and the sideroblastic anemia caused by glutaredoxin 5 deficiency. In each of these diseases, mitochondrial iron-sulfur cluster assembly is impaired, and it appears that normal regulation of mitochondrial iron homeostasis depends on intact iron-sulfur cluster assembly. Finally, in heme oxygenase 1 deficient animals, macrophages in the spleen and liver die upon erythrophagocytosis, and failure to normally metabolize heme leads to shift of heme iron to proximal tubules and macrophages of the kidney. Thus, treatment of “iron overload” must depend on the underlying causes, and removal of iron is appropriate in hemochromatosis, but more specific forms of therapy are needed for other forms of iron overload.
1. Ye, H. & Rouault, T. A. (2010). Human iron-sulfur cluster assembly, cellular iron homeostasis, and disease. Biochemistry 49, 4945–4956.
2. Zhang, A. S. & Enns, C. A. (2009). Molecular mechanisms of normal iron homeostasis. Hematology Am Soc Hematol Educ Program 207–214.
3. Ye, H., Jeong, S. Y., Ghosh, M. C., Kovtunovych, G., Silvestri, L., Ortillo, D., Uchida, N., Tisdale, J., Camaschella, C. & Rouault, T. A. (2010). Glutaredoxin 5 deficiency causes sideroblastic anemia by specifically impairing heme biosynthesis and depleting cytosolic iron in human erythroblasts. J Clin Invest 120, 1749–1761.
4. Ghosh, M. C., Tong, W. H., Zhang, D., Ollivierre-Wilson, H., Singh, A., Krishna, M. C., Mitchell, J. B. & Rouault, T. A. (2008). Tempol-mediated activation of latent iron regulatory protein activity prevents symptoms of neurodegenerative disease in IRP2 knockout mice. Proc Natl Acad Sci U S A 105, 12028–12033.
5. Crooks, D. R., Ghosh, M. C., Haller, R. G., Tong, W. H. & Rouault, T. A. (2010). Posttranslational stability of the heme biosynthetic enzyme ferrochelatase is dependent on iron availability and intact iron-sulfur cluster assembly machinery. Blood 115, 860–869.
No relevant conflicts of interest to declare.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal