Abstract 2338

The molecules and cellular mechanisms that regulate pool size of hematopoietic stem cells and its association with stem cell niches to protect HSC from cell cycle-dependent injury are unclear. The cell cycle regulatory factor, cyclin A1 is overexpressed in patients with hematopoietic malignancies. Further, targeted overexpression of cyclin A1 in myeloid progenitor cells initiated acute myeloid leukemia in transgenic mice.

In the present study, we investigated the role of cyclin A1 in controlling the HSC pool and its functional association with key molecules that regulate stem cell niches under steady-state conditions or following the cytokine stimulation or radiation exposure in vivo and in vitro.

We reported that cyclin A1 null bone marrow displayed a significant increase in the frequency of stem cells (P<0,01) and increased expression of P27kip and increased phosphorylation of Akt at ser-473 site in HSCs and hematopoietic progenitors.

We further showed that increased frequency and number of cyclin A1 null HSCs was associated with the increased expression BMP receptor type IA that is known as a key molecule controlling the HSC niche. In addition, cyclin A1 null HSCs exhibited increased ability to migrate as determined by in vitro migration assay, and bone marrow transplantation assay, and this correlated with the increased expression of MMP9, that is known for controlling the osteoblast cell expansion, and the accumulated nuclear localization of angiogenic and vascularization factor VEGFR2 in cyclin A1 null bone marrow cells. We also observed that IRSp53 that is a regulator for extracellular matrix signaling, was present in the nuclear compartments of cyclin A1 null bone marrow progenitor cells, but was absent in that of the wild-type controls. Further, flow cytometry and immunoblot analyses showed that cyclin A1 null HSCs and progenitor cells exhibited relatively resistant to TNF stimulation and the radiation exposure, and this was associated with the great increase in the expression of phosporylated of ser-473 Akt. Our findings suggest that the microenvironment may be altered in bone marrows from cyclin A1 null mice. Thus cyclin A1 may have important function in the decision of maintaining the HSC pools and protecting the HSCs and progenitors from exposure to the external agents by regulating the interaction between the HSCs/progenitor cells and bone marrow environment.

Disclosures:

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution