Abstract 2890

Background:

Multiple myeloma is an incurable and fatal hematologic malignancy. Recent gene microarray studies showed distinct gene expression profiles defining MM subgroups and their association with cytogenetic abnormalities and treatment outcome. However, aside from transcriptional control, a variety of post-transcriptional/post-translational modifications likely play an important role in regulating protein expression and function, and ultimately may prove informative for predicting tumor behavior.

Objectives:

We hypothesize that the protein profile in MM cells is different than normal plasma cells.

Methodology:

Normal plasma cells and myeloma cells were isolated using CD138 immune magnetic beads from bone marrow aspirates from healthy volunteers or patients with newly diagnosed MM, respectively. CD138+ cells were frozen and subsequently analyzed in one batch. Proteins were digested by trypsin. Tryptic peptides were injected onto an HPLC system and analyzed on a Thermo-Fisher LTQ mass spectrometer. Peptide identification and quantification were carried out using proprietary algorithms. Identified proteins were categorized into priority groups based on the quality of the peptide identification by tandem mass spectrometry. Proteins with significant changes in expression level were further analyzed by bioinformatics tools for the determination of the biological significance.

Results:

In the discovery phase of this study, 433 proteins were identified and their expression levels were quantitatively compared. 169 of these proteins demonstrated a significant difference between normal plasma cells and MM cells. Among the significantly changed proteins, 18 were identified and quantified with high confidence, and were therefore chosen for further validation. The identified proteins are known to be involved in the glycolysis/gluconeogenesis pathway, the oxidative phosphorylation pathway, cysteine metabolism and the pentose phosphate pathway. None of these proteins are known to be of prognostic value or being currently targeted for therapy in MM. A high-throughput LC/MS-based multiple-reaction-monitoring (MRM) assay for quantitative validation of these candidates with clinical samples is ongoing. To date, using the MRM assay, we were able to detect MRM peptides for 13 of the 18 targeted proteins in clinical samples. The quantification of these peptides will be further confirmed using a separate set of clinical samples.

Conclusion:

Significant differences in protein expression were observed between MM and normal plasma cells. The study presents an important step toward using proteomics as a tool to develop diagnostic and/or prognostic biomarkers in the clinical setting. However, both follow-up analytical and clinical validations are required before they can serve as disease-specific biomarkers.

Disclosures:

Abonour:Celgene: Membership on an entity's Board of Directors or advisory committees.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution