Abstract SCI-7

Ataxia-telangiectasia (A-T) is the prototype for an expanded group of inherited radiation sensitive disorders that together define the XCIND syndrome: x-ray hypersensitivity, cancer, immunodeficiency, neurological dysfunction, and DNA repair deficiency. Although the clinical radiosensitivity of these disorders can be tested in the clinical laboratory, diagnostic methods remain limited and in need of further validation. Without exception, to date, sensitivity to ionizing radiation appears to be integrally associated with double strand break (DSB) repair defects and lymphoid cancer susceptibility, setting these disorders apart from single strand break repair disorders such as xeroderma pigmentosum. Responding within seconds to DSB damage are ATM kinase, the protein lacking in A-T, and the NMR complex (nibrin, Mre11, and Rad50). The latter three proteins are associated with three additional XCIND disorders (nibrin deficiency [aka nijmegen breakage syndrome], Mre11 deficiency [ATLD], and Rad50 deficiency). ATM kinase activates a myriad of other proteins that 1) halt DNA synthesis, replication, and the progression of the cell cycle; 2) form a complex protein “mesh” to physically stabilize the broken DNA strands; and 3) restore the integrity of the breaks before they unravel to create even larger chromosomal lesions and resulting malignancies. Another ATM-dependent cancer link involves the downregulation of ATM by microRNA-421. MicroRNA-421 is upregulated by the transcription factor N-myc. Despite this, neuroblastomas are not commonly observed in A-T or XCIND patients. Another subset of XCIND-associated disorders lacks proteins the drive the nonhomologous end joining pathway of DNA repair. Several of these diseases present in infancy as B−/T− severe combined immunodeficiency, or SCID, and are frequent candidates for stem cell transplantation. Attempts to ablate existing bone marrow prior to transplantation may further compromise such patients if they are inherently radiosensitive. Thus, attempts to preselect such patients and reduce radiation dosages may improve general post-transplantation survival. While most protein deficiencies can be diagnosed by immunoblots of appropriate cellular fractions, nonfunctional proteins are not detected by this platform. Colony survival assays (CSA) measure the ability of replicating cells (e.g., lymphoblasts or fibroblasts) to survive after exposure to radiation. Although causal proof that CSA can predict clinical radiosensitivity is lacking, the reduced percent survival fraction (i.e., radiosensitivity) of A-T, N-Bromosuccinimide, or Fanconi cell lines can be abrogated by introducing the mutated cognate gene. Other surrogate assays for radiosensitivity include kinetic studies, pre-irradiation and post-irradiation of γ-H2AX or SMC1 phosphorylation. Ultimately, DNA sequencing of a candidate gene can pinpoint the underlying pathogenesis of radiosensitivity in an XCIND disorder.

Disclosures:

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution