Abstract
Human endogenous retroviruses (HERVs) are ancient viruses forming 8% of human genome. One subset of HERVs, the HERV-K has recently been found to be expressed on tumor cells including melanoma, breast cancer and lymphoma but not on normal body cells. Thus, targeting HERV-K protein as a tumor associated antigen (TAA) may be a potential treatment strategy for tumors that are resistant to conventional therapies. One approach to improve therapeutic outcome is by infusing T cells rendered specific for such TAAs preferentially expressed on tumor cells. Recognition of cell-surface TAAs independent of major histocompatibility complex can be achieved by introducing a chimeric antigen receptor (CAR) on T cells using gene therapy. This approach is currently being used in our clinical trials adoptively transferring CD19-specific CAR+ T cells into patients with B-lineage malignancies. Preliminary analysis of HERV-K env protein expression in 268 melanoma samples and 139 normal organ donor tissues using immunohistochemistry demonstrated antigen expression in tumor cells and absence of expression in normal organ tissues. The scFv region from a mouse monoclonal antibody to target HERV-K env was used to generate a CAR and cloned into Sleeping Beauty (SB) plasmid for stable expression in T cells. HERV-K-specific CAR+T cells were selectively propagated ex vivo on artificial antigen presenting cells (aAPC) using an approach already in our clinical trials. Indeed, after genetic modification of T cells and selection on HERV-K+ aAPC, over 95% of propagated T cells stably expressed the introduced HERV-K-specific CAR and exhibited redirected specificity for HERV-K+ melanoma (Figure 1). Further, the adoptive transfer of HERV-K-specific CAR+T cells killed metastatic melanoma in a mouse xenograph model. While we have chosen melanoma as our tumor model, this study has the potential to be applied to other malignancies, including lymphoma and myeloma due to restricted expression of HERV-K envelope (env) protein on these tumor cells. These data demonstrate that it is feasible to generate T cells expressing a HERV-K-specific CAR using a clinically-appealing approach as a treatment strategy for HERV-K env+ tumors.
Disclosures:
No relevant conflicts of interest to declare.
Author notes
*
Asterisk with author names denotes non-ASH members.
© 2013 by The American Society of Hematology
2013
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal