BACKGROUND. In primary myelofibrosis (PMF), survival from time of diagnosis is predicted by the international prognostic scoring system (IPSS), and from time of referral, by the dynamic IPSS (DIPSS) or DIPSS-plus. JAK2/CALR/MPL mutational status and presence and number of other prognostically-relevant mutations (ASXL1, SRSF2, EZH2, IDH1/2) provide IPSS/DIPSS-plus independent prognostic information. The objective in the current study was to revise IPSS, by including mutation-relevant prognostic information.

METHODS. The study included 986 PMF patients divided into learning (n=588) and validation (n=398) cohorts. Previously published methods were used to screen for mutations involving JAK2,MPL, CALR, EZH2, ASXL1, IDH1/2 and SRSF2. The clinical variables assessed were those previously identified as being prognostically-relevant by IPSS or DIPSS-plus. The prognostic model (MIPSS) was developed through a stepwise selection process, based on a z-test of the regression coefficients, and its relative quality was measured by means of the Akaike information criterion.

RESULTS. In the Italian learning cohort (n=588),median follow-up was 3.6years (95% CI, 0.03-30.8) for alive patients and 196 (33.3%) deaths and 67 leukemic transformations were documented. IPSS risk distribution was low in 26%, intermediate-1 in 30%, intermediate-2 in 24% and high in 20%. Mutational frequencies were approximately 63% for JAK2, 20% CALR, 6% MPL, 7% EZH2, 22% ASXL1, 2.5% IDH1/2 and 9% SRSF2. Constitutional symptoms were recorded in 28.6% of patients, splenomegaly 75% (18% >10cm from LCM) and grade 3 fibrosis 21%. Overall 252 patients were evaluable for karyotype and abnormalities were detected in 35%, including 9.5% unfavorable. Univariate analysis identified the following risk factors for inferior survival: age >60 years, constitutional symptoms, hemoglobin <100g/L, leukocytes >25x109/L, platelets <200x109/L, circulating blasts 1% or greater, splenomegaly >10cm, grade 3 fibrosis, unfavorable karyotype, triple-negativity for JAK2, MPL and CALR (TN), JAK2 or MPL mutation, and mutations in ASXL1, SRSF2, EZH2 or IDH1/2. In multivariable analysis, age >60 years, constitutional symptoms, hemoglobin <100g/L, platelets <200x109/L, TN, JAK2 or MPL mutation, ASXL1 and SRSF2 mutation remained significant; these variables were subsequently assigned the following HR-weighted adverse points: 1.5, 0.5, 0.5, 1.0, 1.5, 0.5, 0.5 and 0.5, respectively. Subsequently, four risk groups with no overlap in the 95% CI of their survival curves were delineated (Figure 1A): low (score 0-0.5); Intermediate-1 (score 1-1.5); Intermediate-2 (score 2-3.5); and high (score 4 or greater). The number of patients in each risk category, median survivals and HR and 95% CI values are included in figure 1A. Akaike information criterion indicated that MIPSS performed better than IPSS in predicting survival (1611.6 vs 1649.0). Leukemia-free survival was also predicted by high (p<0.01) and intermediate 1/2 (p<0.01) risk MIPSS.

In the Mayo Clinic validation cohort (n=398), median age 63 years; males 64%,median follow-up for alive patients was 7.5 years and 271 (68%) deaths and 51 (13%) leukemic transformations were documented. DIPSS-plus risk distribution was low in 13%, intermediate-1 18%, intermediate-2 37% and high 32%. Mutational frequencies were approximately 51% for JAK2, 30% CALR, 7.5% MPL, 5% EZH2, 36% ASXL1, 5.6% IDH1/2 and 13% SRSF2. MIPSS performed equally well in this cohort, as illustrated in figure 1B, which includes number of patients in each risk category with their median survival and HR and 95% CI values. Leukemia-free survival in the Mayo cohort was also predicted by high (p<0.01) and intermediate-2 (p=0.04) risk MIPSS. Patients in the Mayo cohort were fully annotated for karyotype, which was MIPSS-independent in its prognostic value for both overall (p<0.01) and leukemia-free (p<0.01) survival.

CONCLUSIONS. MIPSS addresses the mutation-relevant prognostic information gap in IPSS and performs equally well in the setting of patients seen at time of diagnosis or referral. Karyotype carries MIPSS-independent prognostic value that is recognized in an alternative GIPSS prognostic model (see accompanying ASH 2014 abstract), which complements MIPSS.

Disclosures

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution