Abstract
Pediatric acute lymphoblastic leukemia (ALL) is characterized by recurrent chromosomal translocations that frequently occur in utero in preleukemic cells. The translocation t(12;21) resulting in the formation of the chimeric transcription factor ETV6-RUNX1 is the most frequent structural aberration occurring in 25% of B-cell ALL. A previous study suggested that ETV6-RUNX1 positive preleukemic cells are present in every hundredth human newborn, thus exceeding the actually observed incidence of ETV6-RUNX1 positive ALL in children by a factor of 100. This finding indicated that secondary, but relatively rare cooperating oncogenic hits are necessary for the development of overt leukemia. However, later studies could not confirm this high incidence of preleukemic cells in newborns.
To analyze the actual frequency of ETV6-RUNX1 preleukemic cells in newborns we developed a PCR based method termed genomic inverse PCR for exploration of ligated breakpoints (GIPFEL) and applied this technique to a population-based screening of ≈1000 cord blood samples from healthy newborns.
The GIPFEL method is capable to detect the most common gene fusions associated with childhood leukemia without prior knowledge of the exact breakpoint. In the case of ETV6-RUNX1 positive leukemia, GIPFEL exploits the unique presence of a genomic fragment joining material from chromosomes 12 and 21 in the translocation-positive cells. These fragments can be digested and re-circularized by ligation creating a junction across the restriction site whose sequence can be predicted from published genome data. Importantly, the ligation site is independent of the translocation point within the individual DNA circle. The published breakpoint regions of the ETV6 and RUNX1 genes involved in the translocation were analyzed in silico for restriction sites that allow digestion of all possible translocation events to yield fragments smaller than approximately 50 kb. This condition was met for ETV6-RUNX1 breakpoints by digestion with SacI. Primer pairs were designed amplifying the complete set of theoretically predicted circularized fragments requiring 36 primers for the ETV6-RUNX1 translocation. Genomic DNA was prepared from cell lines, diagnostic specimens from ALL patients, peripheral blood from healthy donors and cord blood samples from newborns by column purification. The equivalent of approximately 4x105 cells (2.5 µg DNA) was subjected to the SacI restriction digest, ligated and remaining linear DNA was removed by exonuclease III. After ethanol precipitation the reaction products were subjected to a partially multiplexed, semi-nested PCR to quantify all possible ligation/junction products specific for the translocation. An internal RUNX1 genomic ligation product served as a quality control and allowed the relative quantification of the translocation product.
In a first proof-of-principle study employing the ETV6-RUNX1 translocation positive cell line REH, process optimization close to the theoretical limits was carried out. Cell dilution and mixing studies revealed that under optimal conditions approximately 40 translocation positive cells (=10-4) present in the input DNA are sufficient to produce a reliable output signal. The method was next tested in a blinded study with 60 samples obtained from ETV6-RUNX1 diagnostic ALL samples. ETV6-RUNX1 samples positive at 10-4, being diluted from these diagnostic samples, still gave a reliable output signal. There was no false positive result. Detection coverage (=sensitivity) was 64%. This method was then applied to a retrospective sample set of cryopreserved anonymized cord blood samples of ≈1000 healthy newborns to determine frequency and levels of translocation-positive cells. First results will be presented.
In conclusion this population-based study will allow an estimate of the actual incidence of ETV6-RUNX1 positive preleukemic cells in healthy newborns. The results will enable us to evaluate the penetrance and leukemia inducing potential of the chimeric transcription factor ETV6-RUNX1 in human newborns and will provide a basis for the assessment of potential secondary environmental or spontaneously occurring cooperating oncogenic lesions in ETV6-RUNX1 positive childhood leukemia.
No relevant conflicts of interest to declare.
Author notes
Asterisk with author names denotes non-ASH members.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal