• Twelve independent, novel, low-frequency (n = 2) and rare (n = 10) genetic variants were associated with fibrinogen, FVII, FVIII, or vWF.

  • Nine were within previously associated genes, and 3 novel candidate genes (KCNT1, HID1, and KATNB1) were confined to cohorts of African ancestry.

Fibrinogen, coagulation factor VII (FVII), and factor VIII (FVIII) and its carrier von Willebrand factor (vWF) play key roles in hemostasis. Previously identified common variants explain only a small fraction of the trait heritabilities, and additional variations may be explained by associations with rarer variants with larger effects. The aim of this study was to identify low-frequency (minor allele frequency [MAF] ≥0.01 and <0.05) and rare (MAF <0.01) variants that influence plasma concentrations of these 4 hemostatic factors by meta-analyzing exome chip data from up to 76 000 participants of 4 ancestries. We identified 12 novel associations of low-frequency (n = 2) and rare (n = 10) variants across the fibrinogen, FVII, FVIII, and vWF traits that were independent of previously identified associations. Novel loci were found within previously reported genes and had effect sizes much larger than and independent of previously identified common variants. In addition, associations at KCNT1, HID1, and KATNB1 identified new candidate genes related to hemostasis for follow-up replication and functional genomic analysis. Newly identified low-frequency and rare-variant associations accounted for modest amounts of trait variance and therefore are unlikely to increase predicted trait heritability but provide new information for understanding individual variation in hemostasis pathways.

Fibrinogen, coagulation factor VII (FVII) and factor VIII (FVIII) and its carrier protein von Willebrand factor (vWF) play key roles in hemostasis. Plasma levels of these hemostatic factors are associated with risk of arterial and venous thrombosis, and fibrinogen is also a marker of inflammation.1-6  Previous genome-wide association studies (GWASs) mainly interrogated common genetic variation and identified variants of modest effect across these phenotypes,4,7-14  with the largest studies identifying 23 loci for fibrinogen,9  5 each for FVII13  and FVIII,13  and 8 for vWF.13  Nonetheless, the associated variants still explain little about the trait heritabilities.9,12,15  An additional proportion of the missing heritability may be attributed to association with rare variants, which are not captured by the conventional genome-wide marker arrays or imputation panels that have been used for GWASs.15  In addition, investigating rare genetic variation is important to understanding individual variation in the biology underlying hemostasis pathways.

The aim of this study was to identify low-frequency and rare variants, analyzed individually or at the level of the gene, that influence plasma concentrations of fibrinogen, FVII, FVIII, and vWF. To this end, we meta-analyzed phenotype-genotype associations of low-frequency (minor allele frequency [MAF], 0.01-0.05) and rare (MAF < 0.01) exonic variants in 76 000 individuals of European (EUR), African (AFR), Hispanic (HIS), or East Asian (ASI) ancestry from 16 studies within the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium.16  We restricted our analyses to variants that were predicted to alter the coding sequence of the gene product to enhance the likelihood of identifying causal variants and to reduce the burden of multiple testing.

Setting and participating cohorts

This study was organized within the CHARGE Consortium Hemostasis Working Group and included 16 cohorts of EUR, AFR, ASI, or HIS ancestry. Descriptions and ancestry composition of participating cohorts are found in the supplemental Data available on the Blood Web site).

Hemostatic factors

Hemostasis phenotypes included plasma measures of fibrinogen, FVII, FVIII, and vWF. Fibrinogen (g/L) was available in all 16 studies; FVII activity (% or IU/mL × 100) and FVII antigen (% or IU/mL × 100) were available in 7 studies; FVIII activity (% or IU/mL × 100) was available in 5 studies; and vWF antigen (% or IU/mL × 100) was available in 8 studies. Methods used by each study are noted in Table 1.

Table 1

Study participant characteristics and phenotype assay or measure

Factor and study acronymAncestryNo. of participants in study% FemaleMean age, yTraitAssay/measure
MeanSD
Fibrinogen (g/L)        
 ARIC49  EUR 10 757 53.1 54.3 2.90 1.21 Clauss 
AFR 3 643 61.9 53.5 3.13 1.23 
 CARDIA50  EUR 2 041 52.5 30.5 2.51 1.23 Immunonephelometry 
AFR 1 709 56.9 29.4 2.66 1.23 
 CHS51  EUR 4 034 56.2 72.8 3.13 1.22 Clauss 
AFR 757 62.2 72.7 3.35 1.23 
 FHS52,53  EUR 6 711 54.3 46.0 3.24 0.68 Clauss 
 GeneSTAR54  EUR 1 091 51.2 41.2 3.51 0.98 Modified Clauss 
AFR 641 61.9 40.6 3.80 1.12 
 KORA S455,56  EUR 2 687 53.1 47.9 2.60 0.58 Immunonephelometry 
 Korcula57  EUR 748 64.3 56.4 4.55 1.52 Clauss 
 LBC 192158,59  EUR 466 57.4 79.1 3.59 0.86 Clauss 
 LBC 193658,60  EUR 973 49.2 69.6 3.27 0.63 Clauss 
 MESA61  EUR 2 483 52.1 62.7 3.35 0.7 Immunonephelometry on the BN II nephelometer 
AFR 1 638 53.8 62.2 3.60 0.79 
ASI 764 50.8 62.4 3.29 0.61 
HIS 1 431 51.5 61.0 3.59 0.75 
 PROCARDIS62  EUR 1 404 36.8 60.9 4.06 0.96 Immunonephelometric 
 RS-I-163-65  EUR 1 114 59.0 70.2 2.70 1.26 Prothrombin time 
 RS-I-363-65  EUR 972 46.7 72.4 3.96 0.89 Prothrombin time 
 SCARF66  EUR 697 17.5 53.2 3.47 0.79 Immunonephelometric 
 SHIP67  EUR 5 940 52.3 47.9 2.99 0.71 Clauss 
 WGHS7,68  EUR 22 411 100 54.7 3.59 0.78 Mass-based immunoturbidimetric assay 
 WHI69-71  EUR 1 204 100 69.6 3.06 0.86 Clauss 
FVII (% antigen or % activity)       
 ARIC EUR 10 544 52.9 54.3 118.3 26.7 Clotting assay (% activity) 
AFR 3 574 61.9 53.6 116.7 28.4 
 CARDIA EUR 997 52.5 30.6 83.7 21.5 Clotting assay (% activity) 
AFR 637 55.6 29.2 84.2 26.2 
 CHS EUR 4 063 56.2 72.8 125.9 29.5 Clotting assay (% activity) 
AFR 760 62.1 72.6 113.0 26.4 
 FHS EUR 2 620 55.3 53.9 100.3 16.3 ELISA (% antigen) 
 RS-I EUR 670 59.0 70.6 107.5 19.1 Clotting assay (% activity) 
 SCARF EUR 698 17.5 53.2 139.9 35.8 ELISA (% antigen) 
 WHI EUR 809 100 69.9 146.0 52.5 Clotting assay (% activity) 
FVIII (% activity)        
 ARIC EUR 10 708 53.0 54.3 124.1 30.6 Clotting assay 
AFR 3 618 61.7 53.5 144.8 41.7 
 CARDIA EUR 998 52.6 30.6 89.8 31.7 Clotting assay 
AFR 632 55.6 29.2 103.5 38.7 
 CHS EUR 4 009 56.2 72.8 120.8 36.7 Clotting assay 
AFR 191 63.9 72.6 138.3 43.9 
 MESA EUR 2 483 52.1 62.7 156.9 64.6 Clotting assay 
AFR 1 638 53.8 62.2 178.0 74.6 
ASI 764 7.7 62.4 157.9 57.2 
HIS 1 418 51.5 61.0 161.8 63.4 
 RS-I EUR 1 832 52.0 68.6 115.7 46.1 Clotting assay 
vWF (% antigen)        
 ARIC EUR 10 736 53.1 54.3 110.7 39.1 ELISA 
AFR 3 625 61.8 53.5 131.4 51.1 
 CARDIA EUR 1 002 52.6 30.6 89.9 36.4 ELISA 
AFR 636 55.7 29.2 94.3 44.4 
 FHS EUR 2 621 55.3 53.9 125.3 45.0 ELISA 
 GeneSTAR EUR 991 52.5 42.6 78.7 46.1 ELISA 
AFR 582 62.2 42.6 76.8 42.5 
 LBC 1921 EUR 150 57.3 86.6 149.7 45.9 ELISA 
 LBC 1936 EUR 706 47.9 72.5 122.6 37.8 ELISA 
 MESA EUR 443 54.7 62.7 135.2 54.5 ELISA 
AFR 193 64.8 62.2 156.1 64.8 
 RS-I EUR 1 587 49.9 73.1 135.9 54.1 ELISA 
Factor and study acronymAncestryNo. of participants in study% FemaleMean age, yTraitAssay/measure
MeanSD
Fibrinogen (g/L)        
 ARIC49  EUR 10 757 53.1 54.3 2.90 1.21 Clauss 
AFR 3 643 61.9 53.5 3.13 1.23 
 CARDIA50  EUR 2 041 52.5 30.5 2.51 1.23 Immunonephelometry 
AFR 1 709 56.9 29.4 2.66 1.23 
 CHS51  EUR 4 034 56.2 72.8 3.13 1.22 Clauss 
AFR 757 62.2 72.7 3.35 1.23 
 FHS52,53  EUR 6 711 54.3 46.0 3.24 0.68 Clauss 
 GeneSTAR54  EUR 1 091 51.2 41.2 3.51 0.98 Modified Clauss 
AFR 641 61.9 40.6 3.80 1.12 
 KORA S455,56  EUR 2 687 53.1 47.9 2.60 0.58 Immunonephelometry 
 Korcula57  EUR 748 64.3 56.4 4.55 1.52 Clauss 
 LBC 192158,59  EUR 466 57.4 79.1 3.59 0.86 Clauss 
 LBC 193658,60  EUR 973 49.2 69.6 3.27 0.63 Clauss 
 MESA61  EUR 2 483 52.1 62.7 3.35 0.7 Immunonephelometry on the BN II nephelometer 
AFR 1 638 53.8 62.2 3.60 0.79 
ASI 764 50.8 62.4 3.29 0.61 
HIS 1 431 51.5 61.0 3.59 0.75 
 PROCARDIS62  EUR 1 404 36.8 60.9 4.06 0.96 Immunonephelometric 
 RS-I-163-65  EUR 1 114 59.0 70.2 2.70 1.26 Prothrombin time 
 RS-I-363-65  EUR 972 46.7 72.4 3.96 0.89 Prothrombin time 
 SCARF66  EUR 697 17.5 53.2 3.47 0.79 Immunonephelometric 
 SHIP67  EUR 5 940 52.3 47.9 2.99 0.71 Clauss 
 WGHS7,68  EUR 22 411 100 54.7 3.59 0.78 Mass-based immunoturbidimetric assay 
 WHI69-71  EUR 1 204 100 69.6 3.06 0.86 Clauss 
FVII (% antigen or % activity)       
 ARIC EUR 10 544 52.9 54.3 118.3 26.7 Clotting assay (% activity) 
AFR 3 574 61.9 53.6 116.7 28.4 
 CARDIA EUR 997 52.5 30.6 83.7 21.5 Clotting assay (% activity) 
AFR 637 55.6 29.2 84.2 26.2 
 CHS EUR 4 063 56.2 72.8 125.9 29.5 Clotting assay (% activity) 
AFR 760 62.1 72.6 113.0 26.4 
 FHS EUR 2 620 55.3 53.9 100.3 16.3 ELISA (% antigen) 
 RS-I EUR 670 59.0 70.6 107.5 19.1 Clotting assay (% activity) 
 SCARF EUR 698 17.5 53.2 139.9 35.8 ELISA (% antigen) 
 WHI EUR 809 100 69.9 146.0 52.5 Clotting assay (% activity) 
FVIII (% activity)        
 ARIC EUR 10 708 53.0 54.3 124.1 30.6 Clotting assay 
AFR 3 618 61.7 53.5 144.8 41.7 
 CARDIA EUR 998 52.6 30.6 89.8 31.7 Clotting assay 
AFR 632 55.6 29.2 103.5 38.7 
 CHS EUR 4 009 56.2 72.8 120.8 36.7 Clotting assay 
AFR 191 63.9 72.6 138.3 43.9 
 MESA EUR 2 483 52.1 62.7 156.9 64.6 Clotting assay 
AFR 1 638 53.8 62.2 178.0 74.6 
ASI 764 7.7 62.4 157.9 57.2 
HIS 1 418 51.5 61.0 161.8 63.4 
 RS-I EUR 1 832 52.0 68.6 115.7 46.1 Clotting assay 
vWF (% antigen)        
 ARIC EUR 10 736 53.1 54.3 110.7 39.1 ELISA 
AFR 3 625 61.8 53.5 131.4 51.1 
 CARDIA EUR 1 002 52.6 30.6 89.9 36.4 ELISA 
AFR 636 55.7 29.2 94.3 44.4 
 FHS EUR 2 621 55.3 53.9 125.3 45.0 ELISA 
 GeneSTAR EUR 991 52.5 42.6 78.7 46.1 ELISA 
AFR 582 62.2 42.6 76.8 42.5 
 LBC 1921 EUR 150 57.3 86.6 149.7 45.9 ELISA 
 LBC 1936 EUR 706 47.9 72.5 122.6 37.8 ELISA 
 MESA EUR 443 54.7 62.7 135.2 54.5 ELISA 
AFR 193 64.8 62.2 156.1 64.8 
 RS-I EUR 1 587 49.9 73.1 135.9 54.1 ELISA 

Full cohort descriptions can be found in the supplemental Data.

ARIC, Atherosclerosis Risk in Communities Study; CARDIA, Coronary Artery Risk Development in Young Adults; CHS, Cardiovascular Health Study; ELISA, enzyme-linked immunosorbent assay; FHS, Framingham Heart Study; GeneSTAR, Genetic Study of Atherosclerosis Risk; KORA S4, Kooperative Gesundheitsforschung in der Region Augsburg; Korcula, Croatia-Korcula study; LBC 1921, Lothian Birth Cohort 1921; LBC 1936, Lothian Birth Cohort 1936; MESA, Multi-Ethnic Study of Atherosclerosis; PROCARDIS, Precocious Coronary Artery Disease Study; RS-I, Rotterdam Study-I; SCARF, Stockholm Coronary Artery Risk Factors; SD, standard deviation; SHIP, Study of Health in Pomerania; WGHS, Women’s Genome Health Study; WHI, Women’s Health Initiative.

Genotype calling and quality control

Fourteen studies were genotyped by using the HumanExome BeadChip v1.0 (Illumina, Inc., San Diego, CA) whereas one was genotyped by using BeadChip v1.1 and another by using BeadChip v1.2. Variant calling and quality control procedures are described in the supplemental Data and in previously published articles.17,18  Prior to analysis, individual studies recoded variants to additive coding by using the minor allele derived from the CHARGE joint calling.

Statistical analysis

In each study fibrinogen measures were natural-log (ln) transformed. For untransformed FVII, FVIII, or vWF, participants with values 3 standard deviations above or below the population mean were removed prior to cohort-level analysis. Study-specific regression analyses were adjusted for sex, age, study design variables, and population substructure by using principal components. MAF thresholds were defined by using the ancestry-specific allele frequencies derived from the CHARGE joint calling.17  Variant annotation was performed centrally within CHARGE by using dbNSFP v2.0.19,20  All association analyses were performed by using the R package seqMeta (http://cran.r-project.org/web/packages/seqMeta/index.html). Details of the genotyping chip and version of statistical software used by each study are provided in supplemental Table 1.

Main association testing.

Single-variant tests.

We investigated low-frequency and rare variants individually by using standard single-variant association analyses. From among the functional variants on the array (defined as missense, stop-gain, stop-loss, or splice-site changes), we selected variants with an MAF <5% and an expected minor allele count of ≥5 in the total meta-analysis sample for single-variant association of autosomal chromosomes. Because commonly occurring variations on the X chromosome have not previously been investigated for some of the phenotypes, no upper MAF threshold was used when testing for associated variants on this chromosome. The Y and mitochondrial chromosomes were not interrogated. Bonferroni-corrected P value thresholds of statistical significance were based on the number of single-variant tests performed, and they varied by ancestry: 2.5 × 10−7 (ALL cohorts), 2.6 × 10−7 (EUR + AFR cohorts), 2.9 × 10−7 (EUR only), 3.3 × 10−7 (AFR only), 1.7 × 10−6 (ASI only), and 4.7 × 10−7 (HIS only) (see supplemental Data).

Gene-based tests.

Analytical methods that aggregate the effect of multiple rare variants across a gene were used to test for association. This resulted in a P value for a gene rather than for a single variant. Both unidirectional and random effects tests were used; unidirectional texts are more powerful when rare variant effects within a region are in the same direction, and random effects tests are more powerful when rare variants affect a phenotype in opposite directions or when many variants have null effects.

All gene-based tests were again restricted to include only functional single nucleotide variants. Random effects (sequence kernel association test [SKAT]21 ) and unidirectional22  (T5) gene tests were performed using only variants with an MAF <5%. The T5 burden was defined as the total number of rare alleles among variants in the gene with an MAF <5%.23  All genes were required to contain more than 1 variant to be included in the analysis and to have a cumulative MAF greater than the frequency such that the meta-analysis sample size would have an expected minor allele count of 5. A Bonferroni-corrected, gene-based P value threshold of 1.9 × 10−6 was used for gene-based tests (0.05/26 965 genes).

Meta-analysis.

Meta-analyses of single variants and gene-based analyses were performed by using seqMeta v1.3. The primary analysis was to meta-analyze all ancestries together, with a secondary set of ancestry-specific analyses performed to complement and inform the results of the primary analysis. All significant nonsynonymous variants were re-annotated by using an updated version of dbNSFP (v.3.0).19,20,24,25 

Conditional analyses.

To test for independence of the new discoveries from variants previously demonstrated to be associated with the phenotype at that locus, conditional analyses were performed and meta-analyzed. These analyses were undertaken for EUR and AFR ancestry cohorts only, and in some cases, the single nucleotide polymorphisms (SNPs) that were conditioned on differed between ancestry groups, generally because of the conditional SNP being monomorphic in 1 population. A description of conditional analyses undertaken is included in supplemental Table 3.

Single-variant and gene-based tests for all 4 hemostatic factors identified significantly associated loci for all phenotypes. The Q-Q plots for all association analyses are found in supplemental Figures 1-3. Functional annotations for all significant nonsynonymous single variants can be found in supplemental Table 2.

Fibrinogen

Exome array genotyping and fibrinogen measures were available for 76 316 participants across 16 cohorts and 4 ancestry groups.

Single-variant testing.

Associations for 6 rare or low-frequency variants that exceeded array-wide significance were observed within 4 genes: 2 fibrinogen structural genes (FGB and FGG) and 2 other genes (PDLIM4 and HNF4A) (Table 2 and supplemental Figure 4).

Table 2

Single-variant meta-analysis results for hemostatic factors fibrinogen, FVII, FVIII, and vWF

Factor and variantAA Change*GeneAncestryNo. of participants in studyMAFβP
Fibrinogen        
 rs201909029 (new) K178N (K148N) FGB ALL 76 316 7.7E-04 −0.139 3.2E-13 
EUR 65 733 8.8E-04 −0.139 5.2E-13 
AFR 8 388 6.0E-05 −0.163 4.3E-01 
ASI 764 NA NA 
HIS 1 431 3.5E-04 −0.117 5.5E-01 
 rs6054 P265L (P235L) FGB ALL 76 316 4.2E-03 −0.111 1.8E-43 
EUR 65 733 4.7E-03 −0.111 3.7E-42 
AFR 8 388 1.2E-03 −0.104 2.6E-02 
ASI 764 1.3E-03 −0.130 3.0E-01 
HIS 1 431 NA NA 
 rs145051028 (new) S245F (S219F) FGG ALL 76 316 1.6E-04 −0.239 4.8E-09 
EUR 65 733 NA NA 
AFR 8 388 1.5E-03 −0.239 4.8E-09 
ASI 764 NA NA 
HIS 1 431 NA NA 
 rs148685782 A108G (A82G) FGG ALL 76 316 3.3E-03 −0.238 9.2E-152 
EUR 65 733 3.8E-03 −0.239 2.3E-150 
AFR 8 388 4.2E-04 −0.165 3.4E-02 
ASI 764 NA NA 
HIS 1 431 3.5E-04 −0.347 7.7E-02 
 rs10479001 A225V PDLIM4 ALL 76 316 5.5E-02 0.013 1.3E-08 
EUR 65 733 4.5E-02 0.018 4.3E-11 
AFR 8 388 1.4E-01 −0.001 8.3E-01 
ASI 764 NA NA 
HIS 1 431 5.5E-02 0.019 2.3E-01 
 rs1800961 T117I HNF4A ALL 76 316 2.7E-02 −0.020 2.3E-10 
T139I EUR 65 733 3.0E-02 −0.020 5.5E-10 
T169I AFR 8 388 5.9E-03 0.012 5.5E-01 
 ASI 764 1.1E-02 −0.031 4.8E-01 
 HIS 1 431 4.2E-02 −0.038 4.0E-02 
 rs151272083 (new) R865Q KCNT1 ALL 76 316 2.2E-03 0.007 5.3E-01 
R877Q EUR 65 733 2.4E-03 0.017 1.3E-01 
R891Q AFR 8 388 7.2E-04 −0.330 2.7E-07 
R910Q ASI 764 NA NA 
 HIS 1 431 NA NA 
 rs141869748 (new) I193T HID1 ALL 76 316 1.6E-04 −0.216 4.2E-07 
I421T EUR 65 733 NA NA 
 AFR 8 388 1.3E-03 −0.252 4.0E-08 
 ASI 764 NA NA 
 HIS 1 431 1.1E-03 0.008 9.4E-01 
FVII        
 rs150525536 (new) R117Q F7 ALL 25 372 9.5E-04 −31.44 1.8E-17 
R70Q EUR 20 401 9.8E-05 −13.92 2.2E-01 
R139Q AFR 4 971 4.4E-03 −33.56 9.7E-18 
 rs121964926 (new) R342Q F7 ALL 25 372 1.2E-03 −25.02 1.3E-14 
R295Q EUR 20 401 4.2E-04 −0.52 9.3E-01 
R364Q AFR 4 971 4.4E-03 −38.08 2.8E-21 
 rs3093248 (new) E423K F7 ALL 25 372 7.5E-04 −22.00 2.8E-07 
E376K EUR 20 401 2.5E-05 −62.77 2.3E-02 
E445K AFR 4 971 3.7E-03 −20.99 1.3E-06 
FVIII        
 rs7962217 G2705R VWF ALL 28 291 4.6E-02 5.16 2.5E-13 
EUR 20 030 5.5E-02 4.84 4.0E-11 
AFR 6 079 1.6E-02 8.58 7.9E-03 
ASI 764 7.2E-03 17.63 3.0E-01 
HIS 1 418 5.8E-02 10.21 2.7E-02 
 rs41276738 (new) R854Q VWF ALL 28 291 4.0E-03 −16.89 2.2E-13 
EUR 20 030 5.3E-03 −15.96 9.2E-12 
AFR 6 079 9.9E-04 −49.57 3.8E-04 
ASI 764 NA NA 
HIS 1 418 1.1E-03 −19.47 5.5E-01 
 rs141041254 (new) E2377K STAB2 ALL 28 291 8.7E-04 26.81 2.1E-08 
EUR 20 030 1.2E-03 28.06 7.6E-09 
AFR 6 079 2.5E-04 −11.70 6.6E-01 
ASI 764 NA NA 
HIS 1 418 NA NA 
 rs1800291 D1260E F8 ALL 28 291 2.7E-01 −1.73 8.2E-08 
EUR 20 030 1.7E-01 −2.15 5.0E-09 
AFR 6 079 3.5E-01 −0.54 4.5E-01 
ASI 764 4.7E-02 7.29 1.8E-01 
HIS 1 418 2.5E-01 0.28 8.9E-01 
 rs142508811 (new) D413D KATNB1 ALL 28 291 2.7E-04 39.36 4.8E-04 
D410D EUR 20 030 1.8E-04 1.08 9.4E-01 
(predicted to alter splicing) AFR 6 079 6.6E-04 86.35 2.8E-07 
 ASI 764 NA NA 
 HIS 1 418 NA NA 
vWF        
 rs141041254 (new) E2377K STAB2 ALL 23 272 8.2E-04 33.65 2.4E-07 
EUR 18 236 9.9E-04 35.21 1.1E-07 
AFR 5 036 2.0E-04 −11.56 7.5E-01 
Factor and variantAA Change*GeneAncestryNo. of participants in studyMAFβP
Fibrinogen        
 rs201909029 (new) K178N (K148N) FGB ALL 76 316 7.7E-04 −0.139 3.2E-13 
EUR 65 733 8.8E-04 −0.139 5.2E-13 
AFR 8 388 6.0E-05 −0.163 4.3E-01 
ASI 764 NA NA 
HIS 1 431 3.5E-04 −0.117 5.5E-01 
 rs6054 P265L (P235L) FGB ALL 76 316 4.2E-03 −0.111 1.8E-43 
EUR 65 733 4.7E-03 −0.111 3.7E-42 
AFR 8 388 1.2E-03 −0.104 2.6E-02 
ASI 764 1.3E-03 −0.130 3.0E-01 
HIS 1 431 NA NA 
 rs145051028 (new) S245F (S219F) FGG ALL 76 316 1.6E-04 −0.239 4.8E-09 
EUR 65 733 NA NA 
AFR 8 388 1.5E-03 −0.239 4.8E-09 
ASI 764 NA NA 
HIS 1 431 NA NA 
 rs148685782 A108G (A82G) FGG ALL 76 316 3.3E-03 −0.238 9.2E-152 
EUR 65 733 3.8E-03 −0.239 2.3E-150 
AFR 8 388 4.2E-04 −0.165 3.4E-02 
ASI 764 NA NA 
HIS 1 431 3.5E-04 −0.347 7.7E-02 
 rs10479001 A225V PDLIM4 ALL 76 316 5.5E-02 0.013 1.3E-08 
EUR 65 733 4.5E-02 0.018 4.3E-11 
AFR 8 388 1.4E-01 −0.001 8.3E-01 
ASI 764 NA NA 
HIS 1 431 5.5E-02 0.019 2.3E-01 
 rs1800961 T117I HNF4A ALL 76 316 2.7E-02 −0.020 2.3E-10 
T139I EUR 65 733 3.0E-02 −0.020 5.5E-10 
T169I AFR 8 388 5.9E-03 0.012 5.5E-01 
 ASI 764 1.1E-02 −0.031 4.8E-01 
 HIS 1 431 4.2E-02 −0.038 4.0E-02 
 rs151272083 (new) R865Q KCNT1 ALL 76 316 2.2E-03 0.007 5.3E-01 
R877Q EUR 65 733 2.4E-03 0.017 1.3E-01 
R891Q AFR 8 388 7.2E-04 −0.330 2.7E-07 
R910Q ASI 764 NA NA 
 HIS 1 431 NA NA 
 rs141869748 (new) I193T HID1 ALL 76 316 1.6E-04 −0.216 4.2E-07 
I421T EUR 65 733 NA NA 
 AFR 8 388 1.3E-03 −0.252 4.0E-08 
 ASI 764 NA NA 
 HIS 1 431 1.1E-03 0.008 9.4E-01 
FVII        
 rs150525536 (new) R117Q F7 ALL 25 372 9.5E-04 −31.44 1.8E-17 
R70Q EUR 20 401 9.8E-05 −13.92 2.2E-01 
R139Q AFR 4 971 4.4E-03 −33.56 9.7E-18 
 rs121964926 (new) R342Q F7 ALL 25 372 1.2E-03 −25.02 1.3E-14 
R295Q EUR 20 401 4.2E-04 −0.52 9.3E-01 
R364Q AFR 4 971 4.4E-03 −38.08 2.8E-21 
 rs3093248 (new) E423K F7 ALL 25 372 7.5E-04 −22.00 2.8E-07 
E376K EUR 20 401 2.5E-05 −62.77 2.3E-02 
E445K AFR 4 971 3.7E-03 −20.99 1.3E-06 
FVIII        
 rs7962217 G2705R VWF ALL 28 291 4.6E-02 5.16 2.5E-13 
EUR 20 030 5.5E-02 4.84 4.0E-11 
AFR 6 079 1.6E-02 8.58 7.9E-03 
ASI 764 7.2E-03 17.63 3.0E-01 
HIS 1 418 5.8E-02 10.21 2.7E-02 
 rs41276738 (new) R854Q VWF ALL 28 291 4.0E-03 −16.89 2.2E-13 
EUR 20 030 5.3E-03 −15.96 9.2E-12 
AFR 6 079 9.9E-04 −49.57 3.8E-04 
ASI 764 NA NA 
HIS 1 418 1.1E-03 −19.47 5.5E-01 
 rs141041254 (new) E2377K STAB2 ALL 28 291 8.7E-04 26.81 2.1E-08 
EUR 20 030 1.2E-03 28.06 7.6E-09 
AFR 6 079 2.5E-04 −11.70 6.6E-01 
ASI 764 NA NA 
HIS 1 418 NA NA 
 rs1800291 D1260E F8 ALL 28 291 2.7E-01 −1.73 8.2E-08 
EUR 20 030 1.7E-01 −2.15 5.0E-09 
AFR 6 079 3.5E-01 −0.54 4.5E-01 
ASI 764 4.7E-02 7.29 1.8E-01 
HIS 1 418 2.5E-01 0.28 8.9E-01 
 rs142508811 (new) D413D KATNB1 ALL 28 291 2.7E-04 39.36 4.8E-04 
D410D EUR 20 030 1.8E-04 1.08 9.4E-01 
(predicted to alter splicing) AFR 6 079 6.6E-04 86.35 2.8E-07 
 ASI 764 NA NA 
 HIS 1 418 NA NA 
vWF        
 rs141041254 (new) E2377K STAB2 ALL 23 272 8.2E-04 33.65 2.4E-07 
EUR 18 236 9.9E-04 35.21 1.1E-07 
AFR 5 036 2.0E-04 −11.56 7.5E-01 

Only SNPs that were still significant after conditional analyses are included in the table. SNPs that achieved genome-wide significance threshold (ALL, P = 2.50E-07; EUR, P = 2.88E-07; AFR, P = 3.30E-07; ASI, P = 1.70E-06; and HIS, P = 4.67E-07) are shown in bold.

ALL, all ancestries (only EUR + AFR for FVII and vWF); NA, not applicable.

*

AA change, amino acid change of SNP.

Amino acid position in parentheses is for the mature protein for FGB (position 30) and FGG (position 26).

MAF, minor allele frequency from CHARGE joint calling.

Two rare variants within FGB, rs6054 (Pro235Leu; MAF, 0.0042; P = 1.8 × 10−43) and rs201909029 (Lys148Asn; MAF, 0.00077; P = 3.2 × 10−13) were associated with lower fibrinogen levels. Both variants had similar effect sizes (–0.111 and −0.139 ln[g/L]) and the magnitude and direction of the association was similar for both variants in all ancestry groups (Table 2). Fibrinogen levels were lower by 10.5% and 13.0%, respectively, per copy of the minor allele when other model factors were fixed (see supplemental Data). The rs6054 association has been reported previously,10  but the rs201909029 variant association is new. Two rare variants within FGG were also associated with fibrinogen levels: rs148685782 (Ala82Gly; MAF, 0.0033; P = 9.2 × 10−152) and rs145051028 (Ser219Phe; MAF, 0.00016; P = 4.8 × 10−09). In this study, rs148685782 had an effect size of −0.238 ln(g/L), which translates to a 21.1% lower fibrinogen level per copy of the minor allele. The direction and magnitude of the effect was similar across all ancestry groups in which it was polymorphic (Table 2). The FGG Ala82Gly variant has previously been associated with low plasma fibrinogen levels.26-28  The rs145051028 variant has an effect size of −0.239 ln(g/L) or a 21.3% lower level of fibrinogen per copy of the minor allele and was polymorphic only in AFR ancestry cohorts. This association has not been previously reported.

To determine whether the newly and previously identified associations within the fibrinogen gene cluster were independent of one another, 3 separate conditional analyses were undertaken: (1) adjustment for previously associated common variants in FGB (rs4220 and rs6056),10  (2) adjustment for the significant rare variants in FGG (rs148685782 and rs145051028; AFR only), and (3) adjustment for the most significant rare variant in FGB (rs6054) (supplemental Table 3). Results demonstrated independence of all variants from one another (Table 3). In total, the rare variants within the fibrinogen gene cluster explained ∼1.3% and ∼0.12% of the trait variance in the EUR and AFR populations, respectively. The majority of the variance in the EUR population (∼0.9%) was attributed to FGG rs148685782.

Table 3

Single-variant test meta-analysis results for conditional analyses of hemostatic factors fibrinogen, FVII, FVIII, and vWF

Factor and variant (gene)AncestryNo. of participants included in analysis*P
UNCONDCOND1COND2COND3
Fibrinogen       
 rs201909029 (FGB) ALL 46 841 1.97E-10 1.35E-09 2.27E-10 3.44E-10 
EUR 40 091 2.69E-10 1.83E-09 3.10E-10 4.68E-10 
AFR 6 750 4.25E-01 4.24E-01 4.21E-01 4.25E-01 
 rs6054 (FGB) ALL 46 841 1.00E-41 6.72E-39 2.67E-42  
EUR 40 091 4.86E-41 3.40E-38 5.46E-42  
AFR 6 750 7.66E-02 7.25E-02 1.97E-01  
 rs145051028 (FGG) ALL 46 841 2.93E-06 2.67E-06  2.90E-06 
EUR 40 091 NA NA NA NA 
AFR 6 750 2.93E-06 2.67E-06  2.90E-06 
 rs148685782 (FGG) ALL 46 841 3.24E-144 6.52E-137  2.49E-143 
EUR 40 091 1.03E-143 2.16E-136  8.02E-143 
AFR 6 750 9.46E-02 9.52E-02  9.43E-02 
FVII       
 rs150525536 (F7ALL 20 549 8.29E-20 1.02E-22   
EUR 16 338 2.23E-01 1.20E-01   
AFR 4 211 3.45E-20 7.56E-23   
 rs121964926 (F7ALL 20 549 5.71E-14 1.49E-14   
EUR 16 338 9.25E-01 5.80E-01   
AFR 4 211 1.75E-20 1.95E-20   
 rs3093248 (F7ALL 20 549 2.54E-06 1.35E-07   
EUR 16 338 NA NA   
AFR 4 211 2.54E-06 1.35E-07   
FVIII       
 rs7962217 (VWFALL 25 477 6.60E-11 1.64E-09   
EUR 20 030 8.69E-10 1.39E-08   
AFR 5 447 1.18E-02 2.35E-02   
 rs41276738 (VWFALL 25 477 1.56E-11 9.85E-14   
EUR 20 030 1.52E-10 1.41E-12   
AFR 5 447 5.96E-03 3.47E-03   
 rs141041254 (STAB2ALL 25 477 7.37E-09 4.11E-09   
EUR 20 030 4.03E-09 2.22E-09   
AFR 5 447 9.17E-01 9.20E-01   
vWF       
 rs141041254 (STAB2ALL 22 636 6.82E-08 3.29E-08   
EUR 18 236 2.85E-08 1.34E-08   
AFR 4 400 7.46E-01 7.49E-01   
Factor and variant (gene)AncestryNo. of participants included in analysis*P
UNCONDCOND1COND2COND3
Fibrinogen       
 rs201909029 (FGB) ALL 46 841 1.97E-10 1.35E-09 2.27E-10 3.44E-10 
EUR 40 091 2.69E-10 1.83E-09 3.10E-10 4.68E-10 
AFR 6 750 4.25E-01 4.24E-01 4.21E-01 4.25E-01 
 rs6054 (FGB) ALL 46 841 1.00E-41 6.72E-39 2.67E-42  
EUR 40 091 4.86E-41 3.40E-38 5.46E-42  
AFR 6 750 7.66E-02 7.25E-02 1.97E-01  
 rs145051028 (FGG) ALL 46 841 2.93E-06 2.67E-06  2.90E-06 
EUR 40 091 NA NA NA NA 
AFR 6 750 2.93E-06 2.67E-06  2.90E-06 
 rs148685782 (FGG) ALL 46 841 3.24E-144 6.52E-137  2.49E-143 
EUR 40 091 1.03E-143 2.16E-136  8.02E-143 
AFR 6 750 9.46E-02 9.52E-02  9.43E-02 
FVII       
 rs150525536 (F7ALL 20 549 8.29E-20 1.02E-22   
EUR 16 338 2.23E-01 1.20E-01   
AFR 4 211 3.45E-20 7.56E-23   
 rs121964926 (F7ALL 20 549 5.71E-14 1.49E-14   
EUR 16 338 9.25E-01 5.80E-01   
AFR 4 211 1.75E-20 1.95E-20   
 rs3093248 (F7ALL 20 549 2.54E-06 1.35E-07   
EUR 16 338 NA NA   
AFR 4 211 2.54E-06 1.35E-07   
FVIII       
 rs7962217 (VWFALL 25 477 6.60E-11 1.64E-09   
EUR 20 030 8.69E-10 1.39E-08   
AFR 5 447 1.18E-02 2.35E-02   
 rs41276738 (VWFALL 25 477 1.56E-11 9.85E-14   
EUR 20 030 1.52E-10 1.41E-12   
AFR 5 447 5.96E-03 3.47E-03   
 rs141041254 (STAB2ALL 25 477 7.37E-09 4.11E-09   
EUR 20 030 4.03E-09 2.22E-09   
AFR 5 447 9.17E-01 9.20E-01   
vWF       
 rs141041254 (STAB2ALL 22 636 6.82E-08 3.29E-08   
EUR 18 236 2.85E-08 1.34E-08   
AFR 4 400 7.46E-01 7.49E-01   

SNPs achieving genome-wide significance threshold (ALL, P = 2.57E-07; EUR, 2.88E-07; AFR, 3.30E-07) are shown in bold.

*

Only EUR and AFR cohorts were asked to run conditional analyses and not all cohorts participated.

UNCOND, unadjusted analyses; a description of conditional (COND) analyses is provided in supplemental Table 3.

The association of low-frequency variants within the PDLIM4 and HNF4A genes supports prior reported associations. The PDLIM4 SNP was in high linkage disequilibrium with previously reported IRF1 SNP rs11242111 (r2, 0.85; D′, 1 within 1000 Genomes Map Pilot 1 v.3, CEU) on chromosome 5,9  and the HNF4A SNP rs1800961 has been previously reported, although it was just below the genome-wide significance threshold in that study.10  The effect size for each was 10-fold smaller than those for FGB and FGG.

Single variants in KCNT1 and in HID1, located in regions not previously reported to be associated with fibrinogen levels, reached array-wide significance in the exploratory AFR only analysis of fibrinogen (Table 2 and supplemental Figure 4). KCNT1 rs151272083 (MAF, 0.00072; P = 2.7 × 10−07) codes for an Arg891Gln change (also reported as the same amino acid change at position 865, 877, or 910 because of transcriptional variation) and was predicted to decrease fibrinogen by 0.330 ln(g/L) or approximately 28.1% per copy of the minor allele in the AFR population. This SNP was also polymorphic in EUR populations but did not reach statistical significance, and the estimated effect was 20-fold smaller (β, 0.017; P = .13). HID1 rs141869748 (Ile421Thr/Ille193Thr; MAF, 0.0013; P = 4.0 × 10−08) was associated with 0.252 ln(g/L) lower fibrinogen (22.3% decrease per copy of the minor allele) in the AFR population. This SNP was monomorphic in the EUR and ASI populations, and its estimated effect in the HIS population, although small, was not in the same direction despite a similar MAF (MAF, 0.0011; β, 0.008; P = .94).

When we further explored these characteristics of the novel associations in the AFR population, we found no evidence for heterogeneity across studies (Phet, 0.07 [rs151272083] and 0.91 [rs141869748]; supplemental Figure 5), and we confirmed that carriers of the variant allele in AFR cohorts had lower mean plasma fibrinogen levels than noncarriers (supplemental Table 5). The variants explained approximately 0.7% (rs151272083) and 0.4% (rs141869748) of the trait variance.

Gene-based testing.

SKAT and T5 tests yielded gene-level associations with all 4 genes described earlier: FGB, FGG, PDLIM4, and HNF4A (Table 4). Gene-based testing did not identify other genes that contributed to plasma-level variation in fibrinogen.

Table 4

Gene-based test meta-analysis results for hemostatic factors fibrinogen, FVII, FVIII, and vWF

Factor and geneAncestryNo. of participants included in analysisP
SKAT5T5
Fibrinogen     
FGB ALL 76 316 1.25E-45 5.59E-32 
EUR 65 733 2.03E-44 1.16E-36 
AFR 8 388 4.50E-01 5.60E-01 
ASI 764 3.00E-01 2.98E-01 
HIS 1 431 9.37E-01 9.39E-01 
FGG ALL 76 316 6.90E-99 7.25E-31 
EUR 65 733 2.49E-111 1.35E-61 
AFR 8 388 2.82E-09 3.18E-04 
ASI 764 NA NA 
HIS 1 431 5.65E-01 8.18E-01 
FVII     
F7 ALL 25 372 6.24E-35 2.36E-37 
EUR 20 401 6.71E-05 8.21E-07 
AFR 4 971 1.83E-35 3.03E-32 
FVIII     
ABO ALL 28 291 5.10E-18 5.71E-30 
EUR 20 030 1.90E-13 1.61E-17 
AFR 6 079 1.91E-03 3.44E-04 
ASI 764 8.37E-01 9.56E-01 
HIS 1 418 3.48E-01 2.89E-02 
VWF ALL 28 291 5.21E-21 1.61E-06 
EUR 20 030 2.20E-07 1.47E-04 
AFR 6 079 8.13E-03 4.09E-01 
ASI 764 1.41E-01 8.01E-01 
HIS 1 418 2.27E-01 4.07E-01 
STAB2 ALL 28 291 3.49E-07 2.56E-03 
EUR 20 030 6.49E-07 5.83E-03 
AFR 6 079 1.44E-01 8.23E-02 
ASI 764 1.78E-01 9.55E-02 
HIS 1 418 9.13E-01 3.09E-01 
vWF     
ABO ALL 23 272 4.07E-19 3.69E-29 
EUR 18 236 2.84E-13 4.17E-18 
AFR 5 036 2.89E-03 3.01E-04 
STAB2 ALL 23 272 2.99E-07 8.07E-03 
EUR 18 236 1.53E-06 1.66E-01 
AFR 5 036 7.24E-04 6.46E-02 
Factor and geneAncestryNo. of participants included in analysisP
SKAT5T5
Fibrinogen     
FGB ALL 76 316 1.25E-45 5.59E-32 
EUR 65 733 2.03E-44 1.16E-36 
AFR 8 388 4.50E-01 5.60E-01 
ASI 764 3.00E-01 2.98E-01 
HIS 1 431 9.37E-01 9.39E-01 
FGG ALL 76 316 6.90E-99 7.25E-31 
EUR 65 733 2.49E-111 1.35E-61 
AFR 8 388 2.82E-09 3.18E-04 
ASI 764 NA NA 
HIS 1 431 5.65E-01 8.18E-01 
FVII     
F7 ALL 25 372 6.24E-35 2.36E-37 
EUR 20 401 6.71E-05 8.21E-07 
AFR 4 971 1.83E-35 3.03E-32 
FVIII     
ABO ALL 28 291 5.10E-18 5.71E-30 
EUR 20 030 1.90E-13 1.61E-17 
AFR 6 079 1.91E-03 3.44E-04 
ASI 764 8.37E-01 9.56E-01 
HIS 1 418 3.48E-01 2.89E-02 
VWF ALL 28 291 5.21E-21 1.61E-06 
EUR 20 030 2.20E-07 1.47E-04 
AFR 6 079 8.13E-03 4.09E-01 
ASI 764 1.41E-01 8.01E-01 
HIS 1 418 2.27E-01 4.07E-01 
STAB2 ALL 28 291 3.49E-07 2.56E-03 
EUR 20 030 6.49E-07 5.83E-03 
AFR 6 079 1.44E-01 8.23E-02 
ASI 764 1.78E-01 9.55E-02 
HIS 1 418 9.13E-01 3.09E-01 
vWF     
ABO ALL 23 272 4.07E-19 3.69E-29 
EUR 18 236 2.84E-13 4.17E-18 
AFR 5 036 2.89E-03 3.01E-04 
STAB2 ALL 23 272 2.99E-07 8.07E-03 
EUR 18 236 1.53E-06 1.66E-01 
AFR 5 036 7.24E-04 6.46E-02 

Genes that achieved genome-wide significance (P < 1.85E-06) are shown in bold.

FVII

Exome array genotyping and coagulation FVII measures were available for 25 372 participants across 7 studies of EUR and AFR participants.

Single-variant testing.

Five exome-wide significant coding rare-variant associations were observed in F7 as well as nearby genes MCF2L and PROZ. When conditioning on the common, previously reported coding variant rs6046 in F7,13  3 previously unreported rare variants within F7 remained exome-wide significant, whereas the variants in MCF2L and PROZ were no longer significant (Table 3). The minor alleles of F7 variants rs150525536 (Arg117Gln; MAF, 0.0010; Pcond = 1.0 × 10−22), rs121964926 (Arg342Gln; MAF, 0.0015; Pcond = 1.5 × 10−14), and rs3093248 (Glu423Lys; MAF, 0.00085; Pcond = 1.4 × 10−07) were all associated with significantly lower plasma FVII levels (Table 2 and supplemental Figure 4). The three variants explained ∼0.06% of the trait variance in EUR participants and 4.5% of the trait variance in AFR participants. For all identified variants, the MAF was lower in EUR than in AFR populations but the direction of effect was the same even if the magnitude varied (Table 2). Sensitivity analyses that removed the 2 studies with FVII antigen rather than activity measured did not have an impact on the findings.

Gene-based testing.

SKAT and T5 tests yielded gene-level associations with F7 (Table 4). No other gene was associated with plasma levels of FVII.

FVIII and vWF

As reported by our prior GWASs, association results for plasma levels of FVIII and vWF were similar, so they will be presented together.13  FVIII measures were available from 28 291 participants from 5 cohorts across all ancestry groups, whereas vWF was available in 23 272 EUR and AFR participants from 8 cohorts.

Single-variant testing.

Genome-wide significant rare and low-frequency variants are presented in Table 2, and cluster plots for the associated SNPs are found in supplemental Figure 4. Five novel low-frequency and rare variant associations were found for FVIII and vWF levels, most within loci with previous FVIII/vWF associations.13 

Low-frequency variant rs7962217 (Gly2705Arg; MAF, 0.046; P = 2.5 × 10−13) and rare variant rs41276738 (Arg854Gln; MAF, 0.0040; P = 2.2 × 10−13) in VWF were significantly associated with lower plasma levels of FVIII but not vWF (P = .96 and P = .03, respectively). Only the association of rs7962217 has been previously reported,29  and conditioning on the most significant common VWF variants associated with FVIII levels (rs1063856 and rs6264363513 ) did not materially alter these results (Table 3). Ancestry-specific analyses yielded effects with the same direction and similar magnitudes, although the MAFs varied by up to 2 orders of magnitude (Table 2).

A single rare variant in STAB2 rs141041254 (Glu2377Lys; MAF, 0.00087) was significantly associated with FVIII (P = 2.1 × 10−08), and vWF levels (P = 2.4 × 10−07) and the new signal remained unchanged when adjusting for rs2271637, the most highly associated STAB2 common variant on the array. In the 2 ancestries in which the variant was polymorphic (AFR and EUR), the direction and the magnitude of the effects diverged (Table 2). This association has not been previously reported.

For FVIII and vWF levels, 11 significant single-variant associations were observed with rare or low-frequency variants within ABO and surrounding genes on chromosome 9. However, after conditioning on common variants tagging the major ABO blood types (A1, A2, B, and O), none of the 11 associations identified in this region remained. A description of these conditional analyses is presented in the supplemental Data and supplemental Table 4.

In exploratory analyses for the FVIII phenotype only, there was a significant association with a common variant on the X chromosome in F8, the gene encoding FVIII. This coding variant, rs1800291 (Asp1260Glu; MAF, 0.27; P = 8.2 × 10−08), had an MAF and effect direction that varied across ancestry groups (Table 2).

For the FVIII phenotype only, a rare variant in KATNB1, a gene not previously associated with FVIII levels, achieved array-wide significance in the AFR population. This variant, rs142508811, was rare in both EUR and AFR populations and was monomorphic in ASI and HIS populations; the estimated effect size was 80-fold larger in AFR than in EUR populations. Across the studies with AFR populations, there was no evidence of heterogeneity (Phet, 0.74); a forest plot for these associations is presented in supplemental Figure 5. Levels of FVIII in carriers of the variant allele had a higher mean FVIII than noncarriers (supplemental Table 5).

For the FVIII phenotype, the 5 variants explained approximately 0.9% of the phenotype variation in both EUR and AFR populations. For the vWF phenotype, the STAB2 variant explained 0.2% and 0% in EUR and AFR populations, respectively.

Gene-based testing.

For FVIII levels, ABO, VWF, and STAB2 yielded gene-wide significant associations with SKAT testing, whereas ABO and VWF were significant with T5 testing (Table 4). For vWF levels, ABO and STAB2 yielded gene-wide significant associations with SKAT testing, whereas ABO was significant with T5 testing; the VWF gene did not achieve significance for vWF. No new associations were identified through gene-based testing.

We identified 12 novel associations of low-frequency (n = 2) and rare (n = 10) variants across the fibrinogen, FVII, FVIII, and vWF traits that were independent of previously identified associations. Nine of the variants were within genes previously established as associated with the trait; findings for associations in 3 new candidate loci were detected in people of AFR ancestry, possibly because of monomorphic or much lower frequency characteristics of these variants in all other ancestries. These newly identified associations accounted for modest amounts of the variance explained and suggest that, at most, a small proportion of the missing heritability can be attributable to them. The gene-based tests did not reveal new loci.

Fibrinogen

Associations of rare variants with fibrinogen levels were found in gene regions previously associated with fibrinogen by common variant GWASs. The association of FGB rare variant rs6054 with lower fibrinogen has been previously reported.10  Although the association of FGB rs201909029 is a novel finding in this context, it has been reported in mild hypofibrinogenemia cases26  in clinical databases (MERIVALE II),30  although it has not been reported to cause hemorrhage or thrombosis.30  The rare FGG variant rs148685782 was associated with hypofibrinogenemia and hemorrhage26-28  in multiple affected individuals. FGG rs145051028, which was associated with fibrinogen levels in AFR cohorts only, has not been reported in clinical databases or population studies. This may be a result of the low MAF and also a lack of studies that included AFR participants. Conditional analyses showed that the common and rare variant associations across the fibrinogen gene cluster were independent, an observation supported by their low r2 for the pairwise linkage disequilibrium. Within the fibrinogen gene cluster, the 4 significant FGB and FGG rare variants explained two- to fourfold more trait variance than the common FGB rs4220 variant,7,9,10,14,31  which had an effect size of 0.029 ln(g/L) or a 2.9% higher level of fibrinogen per copy of the minor allele in this study.

In exploratory ancestry-stratified analyses, the associations of KCNT1 and HID1 with fibrinogen in AFR participants were the only findings that identified new candidate loci tha influence fibrinogen regulation. These findings can only be considered hypothesis generating and require replication.

FVII

We identified 3 rare coding variants in the FVII protein structural gene F7 associated with plasma levels of FVII, none of which were previously reported in the epidemiologic literature. rs150525536 was rare in the AFR population and had a 10-fold lower frequency in the EUR population. A previous case report of this variant was found in a male with an EUR ancestry homozygote who had severe FVII deficiency and who also carried another F7 mutation (Arg212Gln).32  Both mutations were thought to contribute to the phenotype. The mutation reported here is found in the first epidermal growth factor-like domain and is required for binding to tissue factor, its cofactor. It causes reduced binding to tissue factor and reduced clotting ability in a concentration-dependent manner as well as slower activation.32  Variant rs121964926 was also more common among the AFR population than in the EUR population. It has been observed clinically in both asymptomatic and symptomatic individuals with FVII activity <5% from Germany and France as well as patients with reduced FVII activity from Costa Rica, Venezuela, and the United States.33  Nothing has been reported regarding clinical consequences of the rs3093248 variant.

FVIII and vWF

The findings for the vWF trait consisted of a subset of the FVIII results. None of the associations between variants within the ABO gene region and FVIII/vWF were independent of established ABO blood group alleles. Two rare variants in VWF, rs7962217 and rs41276738, were associated with plasma FVIII levels. rs7962217 was associated with higher FVIII levels whereas rs41276738 was associated with lower levels and had an effect size similar to that of the strongest genetic predictor of FVIII levels, the O-deletion tagging SNP (rs657152). rs41276738 has been reported in patients with von Willebrand disease type 134,35  and type 2N,36-43  but the association with vWF levels did not reach exome-wide significance, although its direction was consistent with the direction of effects on FVIII. The STAB2 variant rs141041254 was associated with higher plasma levels of both FVIII and vWF. The effect size was more than 10-fold larger than that reported for the more common STAB2 variant rs2271637 (βFVIII, 1.95%; βvWF, 2.47%). The common F8 coding variant rs1800291 was associated with a much smaller effect on FVIII compared with the ABO O-deletion variant. It has been previously reported,29,44,45  and in the European Association for Haemophilia and Allied Disorders (EAHAD) Coagulation Factor Variants Database, it is annotated as unlikely to be pathogenic. The KATNB1 rs142508811 variant and FVIII association was restricted to the AFR population, although MAF and direction of effect were similar across the 2 polymorphic populations.

Clinical implications

Inferring causality of uncommon and rare variants with a phenotypic expression is challenging and requires strong statistical evidence combined with experimental data.46  Inferring clinical implications from the causal variants requires additional evidence47  not available in our approach. In this article, we identified rare variants associated with higher or lower phenotype levels in 4 hemostasis measures. Some of the variants have been found in patients with diseases related to blood clotting, which suggests that these genes and their uncommon and rare genetic variation may play a role in a clinical phenotype.26-28,32-43  The distribution of the phenotypes within our research populations were within the extremes of a clinically important range (FVII: 0.80-11.40 g/L [fibrinogen], 26% to 441% activity, and 2% to 297% antigen; FVIII: 14% to 500% activity; and vWF: 2% to 374% antigen). Furthermore, the magnitude of difference in the phenotype associated with the variant was mostly modest, although some were larger and were associated with a change equivalent to half the size of the estimated population mean for the phenotype of interest. Therefore, the magnitude of any clinically relevant effects of these variants would be expected to be small to modest. The findings from our study suggest that the contribution of the uncommon and rare variants to complex clinical phenotypes, such as arterial or venous thrombosis or hemorrhagic stroke, should be evaluated in large populations. This article identifies several variants which may be good potential candidates.

Limitations and strengths of the approach

We decided a priori to use all the phenotype-genotype association data for discovery to reduce false-negative findings,48  but this approach provided us with no replication setting. Although these candidate variants are now well characterized, the rare allele frequencies will create challenges for replication in the absence of additional large phenotyped populations. However, our findings provide strong rationale for further functional genomic follow-up, and some of our observations confirm associations for several rare variants that have been reported in patients with the corresponding congenital clotting factor deficiencies. This investigation of low-frequency and rare variants on the 4 phenotypes was limited to the variants included on the BeadChip. Differing sample sizes for the meta-analysis between phenotypes likely affected our power to detect associations, but this may also be influenced by biological differences. In addition, we did not have the statistical power to test for differences in associations across the 4 ancestries. Although it was not an aim of our study, a subsequent effort with this objective would be worthwhile to better understand the genetic architecture of the phenotypes. Finally, although we enriched our variant population with those predicted to be causal, we cannot attribute causality to the variants with novel associations.

The quality of rare variant genotype calling was maximized by the joint clustering performed within CHARGE on thousands of samples.17  By incorporating individuals of non-European ancestry in the primary analysis, we increased our power to detect association in which variants may be more frequent or genetic diversity greater in one ancestry group than another. It also allowed us to broadly look at ancestry-specific gene and rare-variant associations but was vastly underpowered to draw any strong conclusions.

In conclusion, in meta-analyses of 4 hemostatic factors and functionally enriched exonic variants, novel associations of low-frequency and rare variants were identified in 16 studies that included 4 ancestries. Novel variant associations were found within previously reported genes, and they had effect sizes that were often independent of and much larger than previously reported common variants. In addition, rare variant associations at KCNT1, HID1, and KATNB1 identify new candidate genes related to hemostasis for follow-up replication and functional genomic analysis.

This article contains a data supplement.

The publication costs of this article were defrayed in part by page charge payment. Therefore, and solely to indicate this fact, this article is hereby marked “advertisement” in accordance with 18 USC section 1734.

A complete list of acknowledgments for each cohort is found in the supplemental Data.

Contribution: D.V., D.M.B., R.A.M., O.P., A.F.W., C.H., U.V., D.I.C., P.M.R., J.M.S., I.J.D., B.M., B.M.P., N.L.S., W.K., A.H., O.H.F., C.J.O., A.P.R., E.B., and J.I.R. designed the research; J.E.H., O.P., C.H., T.K., U.V., D.I.C., L.M.R., S.E.H., J.M.S., I.J.D., M.S.-L., A.R.F., J.A.B., K.L.W., K.D.T., K.S., A.H., O.H.F., D.L., C.J.O., P.L.A., M.F., N.P., X.G., and J.Y. performed the research; A.T., D.I.C., F.G., M.L.G., A.G., R.J.S., B.S., A.S., M.M.-N., M.W., W.K., M.P.M.d.M., F.R., A.G.U., P.L.A., L.Q., and C.K. contributed vital new reagents or analytical tools; L.R.Y., D.V., D.M.B., R.A.M., O.P., C.H., A.G., D.I.C., F.G., S.E.H., J.M.S., H.W., A.H., A.R.F., B.M.P., M.W., W.K., M.P.M.d.M., F.R., A.G.U., A.H., O.H.F., D.L., G.H.T., C.J.O., P.L.A., C.K., A.P.R., E.B., M.F., M.C., C.-C.H., and N.Z. collected data; L.R.Y., D.V., D.M.B., R.A.M., J.E.H., C.H., M.L.G., T.K., D.I.C., L.M.R., F.G., R.E.M., S.E.H., M.S.-L., A.C.M., J.A.B., K.D.T., B.M., B.M.P., N.L.S., H.R., P.S.d.V., A.D., M.-H.C., G.H.T., C.J.O., C.K., A.P.R., M.F., N.P., X.G., J.Y., W.T., and J.I.R. analyzed and interpreted data; L.R.Y., J.E.H., T.K., D.I.C., L.M.R., R.E.M., M.S.-L., A.C.M., J.A.B., M.M.-N., H.R., P.S.d.V., A.D., M.-H.C., P.L.A., L.-A.L., X.G., and J.Y. performed statistical analysis; and J.E.H., R.E.M., S.E.H., I.J.D., P.S.d.V., G.H.T., A.C.M., A.P.R., C.J.O., and N.L.S. wrote the manuscript. All co-authors were given the opportunity to revise and comment on the text and content of manuscript. This manuscript was approved by all relevant cohort Publication and Presentation committees prior to submission.

Conflict-of-interest disclosure: D.V. is a consultant for MBC, Inc. D.I.C. and P.M.R. have received funding for exome chip genotyping in the Women’s Genome Health Study and collaborative scientific support from Amgen. B.M.P. serves on the data and safety management board for a clinical trial of a device funded by the manufacturer (ZOLL Lifecor) and on the Steering Committee of the Yale Open Data Access Project funded by Johnson & Johnson. O.H.F. is employed by ErasmusAGE, a center for aging research across the life course funded by Nestlé Nutrition (Nestec Ltd.), Metagenics Inc., and AXA. Nestlé Nutrition, Metagenics Inc., and AXA had no role in the design and conduct of the study, the collection, management, analysis, and interpretation of the data, or in the preparation, review, or approval of the manuscript. The remaining authors declare no competing financial interests

Correspondence: Nicholas L. Smith, 1730 Minor Ave, Suite 1360, Seattle, WA 98101; e-mail: nlsmith@u.washington.edu.

1
Folsom
 
AR
Hemostatic risk factors for atherothrombotic disease: an epidemiologic view.
Thromb Haemost
2001
, vol. 
86
 
1
(pg. 
366
-
373
)
2
Folsom
 
AR
Cushman
 
M
Heckbert
 
SR
Ohira
 
T
Rasmussen-Torvik
 
L
Tsai
 
MY
Factor VII coagulant activity, factor VII -670A/C and -402G/A polymorphisms, and risk of venous thromboembolism.
J Thromb Haemost
2007
, vol. 
5
 
8
(pg. 
1674
-
1678
)
3
Smith
 
A
Patterson
 
C
Yarnell
 
J
Rumley
 
A
Ben-Shlomo
 
Y
Lowe
 
G
Which hemostatic markers add to the predictive value of conventional risk factors for coronary heart disease and ischemic stroke? The Caerphilly Study.
Circulation
2005
, vol. 
112
 
20
(pg. 
3080
-
3087
)
4
Danesh
 
J
Lewington
 
S
Thompson
 
SG
et al. 
Fibrinogen Studies Collaboration
Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular mortality: an individual participant meta-analysis.
JAMA
2005
, vol. 
294
 
14
(pg. 
1799
-
1809
)
5
Koster
 
T
Blann
 
AD
Briët
 
E
Vandenbroucke
 
JP
Rosendaal
 
FR
Role of clotting factor VIII in effect of von Willebrand factor on occurrence of deep-vein thrombosis.
Lancet
1995
, vol. 
345
 
8943
(pg. 
152
-
155
)
6
Spiel
 
AO
Gilbert
 
JC
Jilma
 
B
von Willebrand factor in cardiovascular disease: focus on acute coronary syndromes.
Circulation
2008
, vol. 
117
 
11
(pg. 
1449
-
1459
)
7
Danik
 
JS
Paré
 
G
Chasman
 
DI
et al. 
Novel loci, including those related to Crohn disease, psoriasis, and inflammation, identified in a genome-wide association study of fibrinogen in 17 686 women: the Women’s Genome Health Study.
Circ Cardiovasc Genet
2009
, vol. 
2
 
2
(pg. 
134
-
141
)
8
Lovely
 
RS
Yang
 
Q
Massaro
 
JM
et al. 
Assessment of genetic determinants of the association of γ′ fibrinogen in relation to cardiovascular disease.
Arterioscler Thromb Vasc Biol
2011
, vol. 
31
 
10
(pg. 
2345
-
2352
)
9
Sabater-Lleal
 
M
Huang
 
J
Chasman
 
D
et al. 
VTE Consortium; STROKE Consortium; Wellcome Trust Case Control Consortium 2 (WTCCC2); C4D Consortium; CARDIoGRAM Consortium
Multiethnic meta-analysis of genome-wide association studies in >100 000 subjects identifies 23 fibrinogen-associated Loci but no strong evidence of a causal association between circulating fibrinogen and cardiovascular disease.
Circulation
2013
, vol. 
128
 
12
(pg. 
1310
-
1324
)
10
Wassel
 
CL
Lange
 
LA
Keating
 
BJ
et al. 
Association of genomic loci from a cardiovascular gene SNP array with fibrinogen levels in European Americans and African-Americans from six cohort studies: the Candidate Gene Association Resource (CARe).
Blood
2011
, vol. 
117
 
1
(pg. 
268
-
275
)
11
Johnsen
 
JM
Auer
 
PL
Morrison
 
AC
et al. 
NHLBI Exome Sequencing Project
Common and rare von Willebrand factor (VWF) coding variants, VWF levels, and factor VIII levels in African Americans: the NHLBI Exome Sequencing Project.
Blood
2013
, vol. 
122
 
4
(pg. 
590
-
597
)
12
Taylor
 
KC
Lange
 
LA
Zabaneh
 
D
et al. 
A gene-centric association scan for Coagulation Factor VII levels in European and African Americans: the Candidate Gene Association Resource (CARe) Consortium.
Hum Mol Genet
2011
, vol. 
20
 
17
(pg. 
3525
-
3534
)
13
Smith
 
NL
Chen
 
MH
Dehghan
 
A
et al. 
Wellcome Trust Case Control Consortium
Novel associations of multiple genetic loci with plasma levels of factor VII, factor VIII, and von Willebrand factor: The CHARGE (Cohorts for Heart and Aging Research in Genome Epidemiology) Consortium.
Circulation
2010
, vol. 
121
 
12
(pg. 
1382
-
1392
)
14
Dehghan
 
A
Yang
 
Q
Peters
 
A
et al. 
Wellcome Trust Case Control Consortium
Association of novel genetic Loci with circulating fibrinogen levels: a genome-wide association study in 6 population-based cohorts.
Circ Cardiovasc Genet
2009
, vol. 
2
 
2
(pg. 
125
-
133
)
15
Manolio
 
TA
Collins
 
FS
Cox
 
NJ
et al. 
Finding the missing heritability of complex diseases.
Nature
2009
, vol. 
461
 
7265
(pg. 
747
-
753
)
16
Psaty
 
BM
O’Donnell
 
CJ
Gudnason
 
V
et al. 
CHARGE Consortium
Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium: Design of prospective meta-analyses of genome-wide association studies from 5 cohorts.
Circ Cardiovasc Genet
2009
, vol. 
2
 
1
(pg. 
73
-
80
)
17
Grove
 
ML
Yu
 
B
Cochran
 
BJ
et al. 
Best practices and joint calling of the HumanExome BeadChip: the CHARGE Consortium.
PLoS One
2013
, vol. 
8
 
7
pg. 
e68095
 
18
Peloso
 
GM
Auer
 
PL
Bis
 
JC
et al. 
NHLBI GO Exome Sequencing Project
Association of low-frequency and rare coding-sequence variants with blood lipids and coronary heart disease in 56,000 whites and blacks.
Am J Hum Genet
2014
, vol. 
94
 
2
(pg. 
223
-
232
)
19
Liu
 
X
Jian
 
X
Boerwinkle
 
E
dbNSFP v2.0: a database of human non-synonymous SNVs and their functional predictions and annotations.
Hum Mutat
2013
, vol. 
34
 
9
(pg. 
E2393
-
E2402
)
20
Liu
 
X
Jian
 
X
Boerwinkle
 
E
dbNSFP: a lightweight database of human nonsynonymous SNPs and their functional predictions.
Hum Mutat
2011
, vol. 
32
 
8
(pg. 
894
-
899
)
21
Wu
 
MC
Lee
 
S
Cai
 
T
Li
 
Y
Boehnke
 
M
Lin
 
X
Rare-variant association testing for sequencing data with the sequence kernel association test.
Am J Hum Genet
2011
, vol. 
89
 
1
(pg. 
82
-
93
)
22
Li
 
B
Leal
 
SM
Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data.
Am J Hum Genet
2008
, vol. 
83
 
3
(pg. 
311
-
321
)
23
Morris
 
AP
Zeggini
 
E
An evaluation of statistical approaches to rare variant analysis in genetic association studies.
Genet Epidemiol
2010
, vol. 
34
 
2
(pg. 
188
-
193
)
24
Dong
 
C
Wei
 
P
Jian
 
X
et al. 
Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies.
Hum Mol Genet
2015
, vol. 
24
 
8
(pg. 
2125
-
2137
)
25
Jian
 
X
Boerwinkle
 
E
Liu
 
X
In silico prediction of splice-altering single nucleotide variants in the human genome.
Nucleic Acids Res
2014
, vol. 
42
 
22
(pg. 
13534
-
13544
)
26
Ivaskevicius
 
V
Jusciute
 
E
Steffens
 
M
et al. 
gammaAla82Gly represents a common fibrinogen gamma-chain variant in Caucasians.
Blood Coagul Fibrinolysis
2005
, vol. 
16
 
3
(pg. 
205
-
208
)
27
Brennan
 
SO
Fellowes
 
AP
Faed
 
JM
George
 
PM
Hypofibrinogenemia in an individual with 2 coding (gamma82 A→G and Bbeta235 P→L) and 2 noncoding mutations.
Blood
2000
, vol. 
95
 
5
(pg. 
1709
-
1713
)
28
Wyatt
 
J
Brennan
 
SO
May
 
S
George
 
PM
Hypofibrinogenaemia with compound heterozygosity for two gamma chain mutations - gamma 82 Ala→Gly and an intron two GT→AT splice site mutation.
Thromb Haemost
2000
, vol. 
84
 
3
(pg. 
449
-
452
)
29
Tang
 
W
Cushman
 
M
Green
 
D
et al. 
Gene-centric approach identifies new and known loci for FVIII activity and VWF antigen levels in European Americans and African Americans.
Am J Hematol
2015
, vol. 
90
 
6
(pg. 
534
-
540
)
30
Maghzal
 
GJ
Brennan
 
SO
George
 
PM
Fibrinogen B beta polymorphisms do not directly contribute to an altered in vitro clot structure in humans.
Thromb Haemost
2003
, vol. 
90
 
6
(pg. 
1021
-
1028
)
31
Schmelzer
 
CH
Ebert
 
RF
Bell
 
WR
A polymorphism at B beta 448 of fibrinogen identified during structural studies of fibrinogen Baltimore II.
Thromb Res
1988
, vol. 
52
 
2
(pg. 
173
-
177
)
32
Chaing
 
S
Clarke
 
B
Sridhara
 
S
et al. 
Severe factor VII deficiency caused by mutations abolishing the cleavage site for activation and altering binding to tissue factor.
Blood
1994
, vol. 
83
 
12
(pg. 
3524
-
3535
)
33
Herrmann
 
FH
Wulff
 
K
Auerswald
 
G
et al. 
Greifswald Factor FVII Deficiency Study Group
Factor VII deficiency: clinical manifestation of 717 subjects from Europe and Latin America with mutations in the factor 7 gene.
Haemophilia
2009
, vol. 
15
 
1
(pg. 
267
-
280
)
34
Goodeve
 
A
Eikenboom
 
J
Castaman
 
G
et al. 
Phenotype and genotype of a cohort of families historically diagnosed with type 1 von Willebrand disease in the European study, Molecular and Clinical Markers for the Diagnosis and Management of Type 1 von Willebrand Disease (MCMDM-1VWD).
Blood
2007
, vol. 
109
 
1
(pg. 
112
-
121
)
35
James
 
PD
Notley
 
C
Hegadorn
 
C
et al. 
The mutational spectrum of type 1 von Willebrand disease: Results from a Canadian cohort study.
Blood
2007
, vol. 
109
 
1
(pg. 
145
-
154
)
36
Corrales
 
I
Catarino
 
S
Ayats
 
J
et al. 
High-throughput molecular diagnosis of von Willebrand disease by next generation sequencing methods.
Haematologica
2012
, vol. 
97
 
7
(pg. 
1003
-
1007
)
37
Schneppenheim
 
R
Brassard
 
J
Krey
 
S
et al. 
Defective dimerization of von Willebrand factor subunits due to a Cys→Arg mutation in type IID von Willebrand disease.
Proc Natl Acad Sci USA
1996
, vol. 
93
 
8
(pg. 
3581
-
3586
)
38
Eikenboom
 
JC
Reitsma
 
PH
Peerlinck
 
KM
Briët
 
E
Recessive inheritance of von Willebrand’s disease type I.
Lancet
1993
, vol. 
341
 
8851
(pg. 
982
-
986
)
39
Mazurier
 
C
von Willebrand disease masquerading as haemophilia A.
Thromb Haemost
1992
, vol. 
67
 
4
(pg. 
391
-
396
)
40
Peerlinck
 
K
Eikenboom
 
JC
Ploos Van Amstel
 
HK
et al. 
A patient with von Willebrand’s disease characterized by a compound heterozygosity for a substitution of Arg854 by Gln in the putative factor-VIII-binding domain of von Willebrand factor (vWF) on one allele and very low levels of mRNA from the second vWF allele.
Br J Haematol
1992
, vol. 
80
 
3
(pg. 
358
-
363
)
41
Gaucher
 
C
Jorieux
 
S
Mercier
 
B
Oufkir
 
D
Mazurier
 
C
The “Normandy” variant of von Willebrand disease: characterization of a point mutation in the von Willebrand factor gene.
Blood
1991
, vol. 
77
 
9
(pg. 
1937
-
1941
)
42
Kroner
 
PA
Friedman
 
KD
Fahs
 
SA
Scott
 
JP
Montgomery
 
RR
Abnormal binding of factor VIII is linked with the substitution of glutamine for arginine 91 in von Willebrand factor in a variant form of von Willebrand disease.
J Biol Chem
1991
, vol. 
266
 
29
(pg. 
19146
-
19149
)
43
Cacheris
 
PM
Nichols
 
WC
Ginsburg
 
D
Molecular characterization of a unique von Willebrand disease variant. A novel mutation affecting von Willebrand factor/factor VIII interaction.
J Biol Chem
1991
, vol. 
266
 
21
(pg. 
13499
-
13502
)
44
Viel
 
KR
Machiah
 
DK
Warren
 
DM
et al. 
A sequence variation scan of the coagulation factor VIII (FVIII) structural gene and associations with plasma FVIII activity levels.
Blood
2007
, vol. 
109
 
9
(pg. 
3713
-
3724
)
45
Scanavini
 
D
Legnani
 
C
Lunghi
 
B
Mingozzi
 
F
Palareti
 
G
Bernardi
 
F
The factor VIII D1241E polymorphism is associated with decreased factor VIII activity and not with activated protein C resistance levels.
Thromb Haemost
2005
, vol. 
93
 
3
(pg. 
453
-
456
)
46
MacArthur
 
DG
Manolio
 
TA
Dimmock
 
DP
et al. 
Guidelines for investigating causality of sequence variants in human disease.
Nature
2014
, vol. 
508
 
7497
(pg. 
469
-
476
)
47
Richards
 
S
Aziz
 
N
Bale
 
S
et al. 
Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology.
Genet Med
2015
, vol. 
17
 
5
(pg. 
405
-
423
)
48
Skol
 
AD
Scott
 
LJ
Abecasis
 
GR
Boehnke
 
M
Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies.
Nat Genet
2006
, vol. 
38
 
2
(pg. 
209
-
213
)
49
The ARIC Investigators
The Atherosclerosis Risk in Communities (ARIC) Study: design and objectives. The ARIC investigators.
Am J Epidemiol
1989
, vol. 
129
 
4
(pg. 
687
-
702
)
50
Friedman
 
GD
Cutter
 
GR
Donahue
 
RP
et al. 
CARDIA: study design, recruitment, and some characteristics of the examined subjects.
J Clin Epidemiol
1988
, vol. 
41
 
11
(pg. 
1105
-
1116
)
51
Fried
 
LP
Borhani
 
NO
Enright
 
P
et al. 
The Cardiovascular Health Study: design and rationale.
Ann Epidemiol
1991
, vol. 
1
 
3
(pg. 
263
-
276
)
52
Feinleib
 
M
Kannel
 
WB
Garrison
 
RJ
McNamara
 
PM
Castelli
 
WP
The Framingham Offspring Study. Design and preliminary data.
Prev Med
1975
, vol. 
4
 
4
(pg. 
518
-
525
)
53
Kannel
 
WB
Dawber
 
TR
Kagan
 
A
Revotskie
 
N
Stokes
 
J
Factors of risk in the development of coronary heart disease--six year follow-up experience. The Framingham Study.
Ann Intern Med
1961
, vol. 
55
 (pg. 
33
-
50
)
54
Vaidya
 
D
Yanek
 
LR
Moy
 
TF
Pearson
 
TA
Becker
 
LC
Becker
 
DM
Incidence of coronary artery disease in siblings of patients with premature coronary artery disease: 10 years of follow-up.
Am J Cardiol
2007
, vol. 
100
 
9
(pg. 
1410
-
1415
)
55
Holle
 
R
Happich
 
M
Löwel
 
H
Wichmann
 
HE
MONICA/KORA Study Group
KORA--a research platform for population based health research.
Gesundheitswesen
2005
, vol. 
67
 
Suppl 1
(pg. 
S19
-
S25
)
56
Wichmann
 
HE
Gieger
 
C
Illig
 
T
MONICA/KORA Study Group
KORA-gen--resource for population genetics, controls and a broad spectrum of disease phenotypes.
Gesundheitswesen
2005
, vol. 
67
 
Suppl 1
(pg. 
S26
-
S30
)
57
Zemunik
 
T
Boban
 
M
Lauc
 
G
et al. 
Genome-wide association study of biochemical traits in Korcula Island, Croatia.
Croat Med J
2009
, vol. 
50
 
1
(pg. 
23
-
33
)
58
Deary
 
IJ
Gow
 
AJ
Pattie
 
A
Starr
 
JM
Cohort profile: the Lothian Birth Cohorts of 1921 and 1936.
Int J Epidemiol
2012
, vol. 
41
 
6
(pg. 
1576
-
1584
)
59
Deary
 
IJ
Whiteman
 
MC
Starr
 
JM
Whalley
 
LJ
Fox
 
HC
The impact of childhood intelligence on later life: following up the Scottish mental surveys of 1932 and 1947.
J Pers Soc Psychol
2004
, vol. 
86
 
1
(pg. 
130
-
147
)
60
Deary
 
IJ
Gow
 
AJ
Taylor
 
MD
et al. 
The Lothian Birth Cohort 1936: a study to examine influences on cognitive ageing from age 11 to age 70 and beyond.
BMC Geriatr
2007
, vol. 
7
 pg. 
28
 
61
Bild
 
DE
Bluemke
 
DA
Burke
 
GL
et al. 
Multi-ethnic study of atherosclerosis: objectives and design.
Am J Epidemiol
2002
, vol. 
156
 
9
(pg. 
871
-
881
)
62
Clarke
 
R
Peden
 
JF
Hopewell
 
JC
et al. 
PROCARDIS Consortium
Genetic variants associated with Lp(a) lipoprotein level and coronary disease.
N Engl J Med
2009
, vol. 
361
 
26
(pg. 
2518
-
2528
)
63
Hofman
 
A
Breteler
 
MM
van Duijn
 
CM
et al. 
The Rotterdam Study: 2010 objectives and design update.
Eur J Epidemiol
2009
, vol. 
24
 
9
(pg. 
553
-
572
)
64
Hofman
 
A
Darwish Murad
 
S
van Duijn
 
CM
et al. 
The Rotterdam Study: 2014 objectives and design update.
Eur J Epidemiol
2013
, vol. 
28
 
11
(pg. 
889
-
926
)
65
Hofman
 
A
Grobbee
 
DE
de Jong
 
PT
van den Ouweland
 
FA
Determinants of disease and disability in the elderly: the Rotterdam Elderly Study.
Eur J Epidemiol
1991
, vol. 
7
 
4
(pg. 
403
-
422
)
66
Samnegård
 
A
Silveira
 
A
Lundman
 
P
et al. 
Serum matrix metalloproteinase-3 concentration is influenced by MMP-3 -1612 5A/6A promoter genotype and associated with myocardial infarction.
J Intern Med
2005
, vol. 
258
 
5
(pg. 
411
-
419
)
67
Völzke
 
H
Alte
 
D
Schmidt
 
CO
et al. 
Cohort profile: the study of health in Pomerania.
Int J Epidemiol
2011
, vol. 
40
 
2
(pg. 
294
-
307
)
68
Ridker
 
PM
Chasman
 
DI
Zee
 
RY
et al. 
Women’s Genome Health Study Working Group
Rationale, design, and methodology of the Women’s Genome Health Study: a genome-wide association study of more than 25,000 initially healthy american women.
Clin Chem
2008
, vol. 
54
 
2
(pg. 
249
-
255
)
69
The Women’s Health Initiative Study Group
Design of the Women’s Health Initiative clinical trial and observational study.
Control Clin Trials
1998
, vol. 
19
 
1
(pg. 
61
-
109
)
70
Anderson
 
CA
Boucher
 
G
Lees
 
CW
et al. 
Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47.
Nat Genet
2011
, vol. 
43
 
3
(pg. 
246
-
252
)
71
Hays
 
J
Hunt
 
JR
Hubbell
 
FA
et al. 
The Women’s Health Initiative recruitment methods and results.
Ann Epidemiol
2003
, vol. 
13
 
9 Suppl
(pg. 
S18
-
S77
)
Sign in via your Institution