Abstract
Previously, we described new mechanism of G-CSF-triggered granulocytic differentiation of hematopoietic stem cells (HSCs) via activation of the enzyme Nicotinamide Phosphorybosyltransferase (NAMPT) leading to NAD+ production and activation of NAD+ -dependent protein deacetylase sirtuin 1 (SIRT1). We found, that upon stimulation of HSCs with NAMPT, SIRT1 bound to the key myeloid transcription factor C/EBPα followed by transcriptional induction of C/EBPα target genes G-CSFR and G-CSF and granulocytic differentiation.
In the present work we investigated the mechanism of NAMPT/SIRT1-triggered deacetylation of C/EBPα. We found that C/EBPα is acetylated at the position Lys 161, which is evolutionarily conserved. Lys 161 is localized in the transactivation element III (TE-III) of the transactivation domain (TAD) of C/EBPα protein, which is responsible for recruitment of SWI/SNF and CDK2/CDK4. Western blot and DUOLINK analysis using rabbit polyclonal antibody specifically recognizing acetyl-Lys 161 of C/EBPα revealed predominantly nuclear localization of acetylated C/EBPα protein in acute myeloid leukemia cell lines NB4 and HL60 as well as in primary HSCs. Induction of myeloid differentiation of HSCs by treatment with G-CSF as well as ATRA-induced differentiation of NB4 cells resulted in the deacetylation of C/EBPα. NAMPT inhibition in NB4 and HL60 cell lines using specific inhibitor FK866 led to the dramatically elevated levels of acetylated C/EBPα and reduced amounts of total C/EBPα protein, which was in line with diminished mRNA expression of C/EBPα target genes (G-CSF, G-CSFR and ELANE). Interestingly, treatment of acute myeloid leukemia cell line HL60 with NAMPT or transduction of HL-60 cells with NAMPT-expressing lentiviral construct induced myeloid differentiation of these cells even without addition of ATRA. This was in line with time- and dose-dependent increase of total C/EBPα protein levels upon NAMPT treatment. Therefore, NAMPT overcomes transcriptional repression of C/EBPα in HL-60 cells by activation of positive CEBPA autoregulation.
Taken together, we described a new mechanism of regulation of C/EBPα activities in hematopoiesis and leukemogenesis by its post-translational modification via NAMPT/SIRT1-triggered de-/acetylation.
No relevant conflicts of interest to declare.
Author notes
Asterisk with author names denotes non-ASH members.
This icon denotes a clinically relevant abstract
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal