Abstract
DNA methylation is one of the major epigenetic mechanisms that controls cellular differentiation. The ten-eleven translocation (TET) family of methylcytosine dioxygenases mediates active DNA demethylation through the oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) and subsequent intermediates. Here we demonstrate that TET2 regulates CD8+ T cell differentiation in vivo following acute and chronic viral infection. At steady-state, mice with a T-cell specific deletion of TET2 have intact thymic and peripheral T cell populations. Following acute viral infection with LCMV-Armstrong, TET2 loss enhances LCMV-specific CD8+ T cell memory differentiation in a cell-intrinsic manner without disrupting antigen-specific cell expansion or cytokine production. However, TET2-deficient memory CD8+ T cells exhibit altered recall responses with blunted re-expansion, retained expression of phenotypic memory markers and restricted re-expression of activation markers. During chronic viral infection with LCMV-clone 13, TET2 controls CD8+ T cell expansion and alters differentiation. Importantly, though mice with T-cell specific loss of TET2 developed similar levels of CD8+ T cell exhaustion as wild-type mice, TET2 loss specifically reduced PD-1 expression suggesting that TET2 may direct DNA demethylation of the PD-1 locus. Together, our data indicate that TET2 is an important regulator of CD8+ T cells following both acute and chronic viral infections and suggest targeting epigenetic regulators have potential for enhancing antiviral immunity.
No relevant conflicts of interest to declare.
Author notes
Asterisk with author names denotes non-ASH members.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal