Introduction: Early T-cell precursor acute lymphoblastic leukemia (ETP T-ALL) is a distinct subtype of T-ALL characterized by higher rates of relapse and induction failure. Large-scale genetic sequencing studies have identified frequently mutated oncogenes and gene fusions in ETP T-ALL, while bulk transcriptome analyses have revealed expression features resembling myeloid precursors and myeloid malignancies. However, the contributions of intra-tumoral functional heterogeneity and microenvironment to tumor biology and treatment failure remain unknown.

Methods: We performed full-length single-cell RNA-sequencing of 5,077 malignant and normal immune cells from bone marrow or blood from five patients with relapsed/refractory ETP T-ALL (based on immunophenotyping, all with NOTCH1 mutations), before and after targeted therapy against NOTCH1. These patients were enrolled on a phase I trial with the γ-secretase inhibitor (GSI) BMS-906024 (NCT01363817). Expression of selected genes was validated by RT-PCR, flow cytometry and immunohistochemistry.

Results: Single cell transcriptome analyses revealed a deranged developmental hierarchy characterized by co-expression of stemness programs in multiple malignant cells implying ineffectual commitment to either lymphoid or myeloid lineage. Most ETP T-ALL cells co-expressed HSC (hematopoietic stem cell), CMP (common myeloid progenitor) and CLP (common lymphoid progenitor) signatures simultaneously (Pearson correlation: CLP-CMP: R= 0.41, p < 2.2e-16; HSC-CLP: R= 0.53; p < 2.2e-16; HSC-CMP: R = 0.39, p <2.2e-16). Only a fraction of cells (less than 15%) demonstrated mutually exclusive CLP or HSC signatures. In contrast, CLP, CMP and HSC signatures were not co-expressed and always negatively correlated in normal bone marrow cells (CLP-CMP: R= -0.11, p < 2.2e-16; HSC-CLP: R= -0.38; p < 2.2e-16; HSC-CMP: R = -0.67, p <2.2e-16).

Direct targeting of NOTCH1 as the driving oncogene has shown disappointing results in the clinical setting due to the rapid development of resistance. PI3K activation has been shown as a genetic mechanism of Notch resistance, however it is unclear if transcriptional rewiring can give rise to PI3K dependent cells after Notch inhibition. To address this question, we predicted the activity of signaling pathways in single cells after Notch inhibitor treatment using PROGENy. Most single cells demonstrated loss of Notch signaling. PI3K signaling activity was the most anti-correlated signaling pathway to Notch signaling (Pearson correlation: R= -0.51, p < 2.2e-16). Of note, this population preexisted at a frequency of ~30% in the untreated population, coexisting with cells with high Notch activation.

Analysis of the immune microenvironment revealed an oligoclonal T-cell population in ETP T-ALL compared to normal donor T-cells. CD8+ T-cells from ETP patients expressed markers of T-cell exhaustion (PDCD1, TIGIT, LAG3, HAVCR2). Analyses of expression levels of the respective ligands on leukemic blasts and the predicted interaction with their receptors on endogenous CD8+ T-cells demonstrated the highest interaction score between HAVCR2 and its ligand LGALS9. LGALS9 was universally expressed in all leukemic cells, which was confirmed by flow cytometry staining in leukemic blasts and IHC staining in bone marrow of 8 patients with ETP T-ALL and 7 patients with T-ALL. T-ALL supernatant increased expression levels of the exhaustion markers HAVCR2,TIGIT and decreased effector marker GZMB in polyclonal activated normal donor CD8+ T-cells (RT-PCR). This effect was abrogated by neutralizing LGALS9 and could be rescued with recombinant LGALS9.

Conclusion: We identified deranged developmental hierarchy characterized by co-expression of stemness programs in multiple malignant cell states and ineffectual commitment to either lymphoid or myeloid lineage in ETP T-ALL. Leukemic blasts demonstrate preexisting heterogeneity of diverse oncogenic states as evidenced by opposing PI3K and Notch activity, suggesting possible novel combination therapies. Notch inhibition abolishes the Notch high state without effecting the PI3K active state. Finally, we demonstrate a possible role for HAVCR2-LGALS9 interactions in causing CD8+ T-cell dysfunction in ETP T-ALL patients, which may provide a novel therapeutic strategy in this disease.

Disclosures

Silverman:Takeda: Consultancy; Servier: Consultancy, Research Funding. Lane:AbbVie: Research Funding; Stemline Therapeutics: Research Funding; N-of-One: Consultancy. DeAngelo:Glycomimetics: Research Funding; Amgen, Autolus, Celgene, Forty-seven, Incyte, Jazzs, Pfizer, Shire, Takeda: Consultancy; Blueprint: Consultancy, Research Funding; Novartis: Consultancy, Research Funding; Abbvie: Research Funding. Lohr:Celgene: Research Funding; T2 Biosystems: Honoraria.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution