Multiple myeloma (MM) is a commonly occurring hematologic malignancy in the United States with poor prognosis. Among all treatments, proteasome inhibitor (PI) based regimens have been a major breakthrough for patients' outcomes. Available PIs all target 20S proteasome core complex, and the duration of response is limited by toxicity and resistance development. Until now, the underlying mechanism of drug resistance remains unclear.

The proteasome is the major proteolytic machinery in protein homeostasis which is pivotal for myeloma cell survival. A functional proteasome consists of 20S proteasome core particle with regulatory particle on one or both ends. There are 3 types of proteasome regulators that could activate a 20S proteasome, PA700 (19S), 11S REG (PA28) and PA200. The 11S REG (PA28) protein family consists of three members, α, β, and γ. PA28 α/β are IFN-γ inducible and with higher expression in antigen presenting cells. Currently, the function of 11S subunit remains largely unknown.

Our analysis of plasma cells from MM patients and healthy donors has demonstrated that expression of 11S proteasome is higher in myeloma cells than normal plasma cells and progressively upregulated with disease progression. To further identify the function of 11S proteasome especially PA28α in MM, we generate PA28α knockdown stable MM cell lines. We have found that knockdown of PA28α inhibits MM cell growth and proliferation, also induces myeloma cell resistance to PIs. The mechanism of PI resistance is different from knocking down of 19S or 20S proteasome subunits. Silencing of PA28α inhibits proteasome activity and decreases proteasome work load concurrently, resulting in a favorable proteasome load vs capacity ratio. Altogether, in this report, we describe the function of PA28α in MM cells, also provide novel insights into regulating PIs sensitivity through modulation of the 11S proteasome subunit PA28α.

Disclosures

Hofmeister:Nektar: Honoraria, Membership on an entity's Board of Directors or advisory committees; Karyopharm: Membership on an entity's Board of Directors or advisory committees; Imbrium: Membership on an entity's Board of Directors or advisory committees; Celgene: Honoraria; Janssen: Membership on an entity's Board of Directors or advisory committees; Oncopeptides: Membership on an entity's Board of Directors or advisory committees. Kaufman:Karyopharm: Membership on an entity's Board of Directors or advisory committees; Pharmacyclics: Membership on an entity's Board of Directors or advisory committees; Janssen: Honoraria; Amgen: Consultancy; Bristol-Myers Squibb: Consultancy; Incyte: Consultancy; Celgene: Consultancy; Winship Cancer Institute of Emory University: Employment; AbbVie: Consultancy; Takeda: Consultancy; TG Therapeutics: Consultancy. Nooka:Amgen: Honoraria, Other: advisory board participation; GSK: Honoraria, Other: advisory board participation; Celgene: Honoraria, Other: advisory board participation; Takeda: Honoraria, Other: advisory board participation; Spectrum pharmaceuticals: Honoraria, Other: advisory board participation; BMS: Honoraria, Other: advisory board participation; Janssen: Honoraria, Other: advisory board participation; Adaptive technologies: Honoraria, Other: advisory board participation. Boise:Genentech Inc.: Membership on an entity's Board of Directors or advisory committees; AstraZeneca: Honoraria, Research Funding. Lonial:Takeda: Consultancy, Research Funding; Amgen: Consultancy; BMS: Consultancy; Janssen: Consultancy, Research Funding; GSK: Consultancy; Karyopharm: Consultancy; Genentech: Consultancy; Celgene Corporation: Consultancy, Research Funding.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution