• AML/MDS defined by germline DDX41 CV represents a unique entity with favorable outcome.

  • Germline DDX41 CVs predisposing patients to MN are often associated with somatic DDX41 mutations.

Germline DDX41 variants are the most common mutations predisposing to acute myeloid leukemia (AML)/myelodysplastic syndrome (MDS) in adults, but the causal variant (CV) landscape and clinical spectrum of hematologic malignancies (HMs) remain unexplored. Here, we analyzed the genomic profiles of 176 patients with HM carrying 82 distinct presumably germline DDX41 variants among a group of 9821 unrelated patients. Using our proposed DDX41-specific variant classification, we identified features distinguishing 116 patients with HM with CV from 60 patients with HM with variant of uncertain significance (VUS): an older age (median 69 years), male predominance (74% in CV vs 60% in VUS, P = .03), frequent concurrent somatic DDX41 variants (79% in CV vs 5% in VUS, P < .0001), a lower somatic mutation burden (1.4 ± 0.1 in CV vs 2.9 ± 0.04 in VUS, P = .012), near exclusion of canonical recurrent genetic abnormalities including mutations in NPM1, CEBPA, and FLT3 in AML, and favorable overall survival (OS) in patients with AML/MDS. This superior OS was determined independent of blast count, abnormal karyotypes, and concurrent variants, including TP53 in patients with AML/MDS, regardless of patient’s sex, age, or specific germline CV, suggesting that germline DDX41 variants define a distinct clinical entity. Furthermore, unrelated patients with myeloproliferative neoplasm and B-cell lymphoma were linked by DDX41 CV, thus expanding the known disease spectrum. This study outlines the CV landscape, expands the phenotypic spectrum in unrelated DDX41-mutated patients, and underscores the urgent need for gene-specific diagnostic and clinical management guidelines.

Hereditary hematologic malignancies (HM) typically manifest at earlier ages than de novo disease,1 usually with substantial familial clustering.2,3 Inclusion of hereditary HM in the fourth edition of World Health Organization classification of hematopoietic and lymphoid tissues4 emphasizes the importance of germline evaluation in patients with myeloid neoplasm (MN). The National Comprehensive Cancer Network guidelines on next-generation sequencing (NGS) for patients with MN facilitate comprehensive large-scale screening in the general population for variants of interest, which has revealed the surprisingly high incidence of presumably germline mutations in genes predisposing to HM in children and adults. Approximately 8% of pediatric and adult patients have a pathogenic germline variant, and many patients lack a pertinent family history (FH).5,6 These recent studies have revealed that familial HM predisposition syndromes, previously thought to be rare diseases, are more common than anticipated.

Recently, our group and others identified DDX41 as 1 of the most common MN predisposition genes in adults.7-9 Unlike some other hereditary HMs that present in childhood or adolescence, DDX41 is associated with late-onset MN, at ages typical of sporadic acute myeloid leukemia (AML)/myelodysplastic syndrome (MDS),10 years after indolent and mild cytopenia,7,8,10-12 and these patients often lack FH.7,8,10-12 The subacute disease course of DDX41-associated AML is generally accompanied by bone marrow hypocellularity and a borderline increase in blasts with a near normal immunoprofile, and most patients have a normal karyotype. These features make the initial diagnosis of this inherited AML more challenging than other hereditary HM predisposition syndromes.8 

Despite increasing integration of NGS assessment in clinical practice, the accurate diagnosis of DDX41-associated HM is further complicated by the currently limited ability to distinguish between causal and benign variants. The lack of FH, reduced penetrance and the long disease latency complicate the power of the familial segregation studies to accurately identify causal variants (CVs) among the increasing pool of novel missense variants identified by NGS. Identification of germline CVs can inform long-term patient management and prevent engraftment failure13 and donor-derived leukemia14-18 in some clinical contexts where allogeneic stem cell transplantation (HSCT) is necessary.7,8 Furthermore, family members also benefit from identification of a germline variant in informing their own risk of developing MN. Unfortunately, no consensus has been reached on guidelines of DDX41-specific diagnosis and patient management because of limited awareness of this disease and the inherent challenges in classification of novel missense germline variants. Thus, collaboration on variant curation among expert panels to develop gene-specific diagnostic guidance has become urgent as these novel variants are increasingly detected.

Beyond AML and MDS, germline DDX41 mutations appear to predispose to other MN, such as chronic myelomonocytic leukemia (CMML), chronic myeloid leukemia (CML), and myelodysplastic/myeloproliferative neoplasm (MDS/MPN), lymphoproliferative disorders (LPD), and potentially nonhematopoietic neoplasms.7,10,19 Previously reported cases with mixed germline CV and variant of uncertain significance (VUS) provide insufficient support to link germline DDX41 mutations to LPD and other MN. Moreover, the overall natural course and characteristic pathologic findings of each DDX41-associated entity remain unclear, and long-term surveillance for asymptomatic individuals with germline CV and guidelines for early intervention are also needed.

In this study, we identified 176 patients with HM with presumably germline DDX41 variants in an unselected and unrelated 9821 patient cohort from six institutions. Applying our proposed DDX41-specific classification criteria, we analyzed the genomic profiles, demographic characteristics, and clinical outcomes of each specific disease entity. The striking partitioning of these features with variants we deemed CV vs VUS indicates the variant classification criteria are warranted and supports the assertion that AML/MDS with DDX41 germline CV represent 1 distinct clinical entity with a favorable outcome. Building on the current literature, we further delineated the germline CV landscape, expanded the phenotypic spectrum of HM with germline DDX41 CV to include MPN and B-cell lymphoma to improve the recognition and refine the management of this HM predisposition syndrome.

Case selection

Cases with at least 1 DDX41 variant (n = 195) were identified through retrospective search of the pathology archives from January 2015 to June 2021 at the University of Utah, ARUP Laboratories, Oregon Health and Science University, University of Kansas Medical Center, Emory University, Stanford University, and University of California San Diego in 9821 unrelated and unselected patients with HM (including 3583 AML, 2161 MDS, 1029 MPN, and 3048 other diagnoses) who underwent targeted panel testing by NGS (Figure 1). Nineteen patients (0.2%) exhibited somatic DDX41 variants without germline variants, whereas 176 patients (1.8%) had at least 1 presumed germline variant. Germline variants were further classified into CV or VUS according to the proposed DDX41-specific classification criteria (Figure 1) modified from the American College of Medical Genetics/the Association for Molecular Pathology (ACMG/AMP) guidelines (supplemental Table 3, available on the Blood Web site).20 Demographic data, clinical information, and molecular and cytogenetic profiles were further analyzed to test the proposed classification criteria. Among the 176 patients with HM carrying germline DDX41 variants, the World Health Organization entities of HM included 84 AML (66 CV and 18 VUS), 40 MDS (28 CV and 12 VUS), 15 MPN (4 CV and 11 VUS), and 37 others. The other category (Figure 2; Tables 1 and 2) included 32 clonal cytopenia of undetermined significance (CCUS, designated as cytopenia), 4 B-cell LPD, and 1 multiple myeloma (MM). Of note, 24 patients with AML with DDX41 CV have been documented in a previous study.8 A control cohort of 4307 patients without DDX41 variants (including 1365 AML, 1109 MDS, 479 MPN, and 1354 other, primarily CCUS) were identified by retrospective search of patients tested at ARUP. All were adult patients (age range, 18-97 years), and their demographic and genetic characteristics were compared with those with germline DDX41 variants (Figure 1A). Clinical follow-up information was available in 158 patients with AML and 87 patients with MDS and included in overall survival (OS) analysis as the controls (Figure 1A) as they were tested and treated at Huntsman Cancer Institute in the same period as DDX41 mutant patients. As ethnicity and clinical outcome data were not available for some samples tested at ARUP Laboratories (a national reference laboratory), these patients were excluded from ethnicity-specific and OS analysis. This study was approved by the institutional review boards at the participating institutions.

Figure 1.

Flowchart of this multi-institutional study and graphical representation of DDX41 variants found in this study. (A) In this study, 195 (2%) patients with HM with at least 1 DDX41 variant (MAF < 0.1%) are identified in 9821 unrelated and unselected adult patients from 6 medical centers and at ARUP Laboratories. Among these patients with HM, 3583 are diagnosed with AML, 2160 with MDS, 1030 with MPN, and 3048 with others including cytopenia and other myeloid and lymphoid neoplasms. These DDX41 variants are further classified into somatic variants alone (variants with a VAF < 40% in isolation) and presumed germline variants (VAFs of 40% or above, with or without concurrent somatic DDX41 variants). The germline variants are further classified into CV (PV/LPV, n = 116) and VUS (n = 60), according to the proposed gene-specific diagnostic criteria, modified from the ACMG guidelines.20 Among the 116 patients with germline DDX41 CV, 66 are diagnosed with AML, 28 with MDS, 4 with MPN, and 18 with cytopenia (others). Similarly, among the 60 patients with germline VUS, 18 are diagnosed with AML, 12 with MDS, 11 with MPN, and 19 with others. Among others, 4 are diagnosed with B-cell LPD, 1 with MM, and 14 with cytopenia. In addition, we select 4307 adult patients with HM (age of 18 years or above) with wild-type DDX41 (DDX41), confirmed by NGS testing at ARUP laboratories during the same time period. Among these control patients (DDX41), 1365 have a documented AML diagnosis, and the remaining cases include 1109 MDS, 479 MPN, and 1354 others, most of which are cytopenia, similar to those in the cohort of 9821 patients described above. Patients’ age, sex, and cytogenetic and molecular profiles are summarized and sorted by each distinct MN entity and correlated with their DDX41 genotypes (short double-headed arrows indicate the epidemiologic and molecular profile comparisons in between DDX41+ CV, VUS, and DDX41 cohorts). Furthermore, we summarize the OS in patients with AML and MDS who were treated at Huntsman Cancer Institute and other medical centers in comparison with the age-matched cohorts (long double-headed arrows indicate the OS comparisons in between DDX41+ CV, VUS, and DDX41 cohorts). #Of note, 24 patients with AML with DDX41 CV have been documented in a previous study.8 (B) Graphic distribution of variants identified in this study, positioned on the protein sequence (NM_016222.4) with major functional domains (red, DEAD domain; green, helicase domain; orange, Znf, zinc finger domain; teal, NLS, nuclear localization signaling domain) is separated by germline (above-protein sequences) or somatic (below) variants. Each symbol in germline variants represents 1 patient. The underline indicates novel variants reported in this study. Red, DDX41 CV; blue, DDX41 VUS; orange, p.R164W, likely CV in lymphoma. *With specific exceptions (eg, p.M155I and p.P510S).

Figure 1.

Flowchart of this multi-institutional study and graphical representation of DDX41 variants found in this study. (A) In this study, 195 (2%) patients with HM with at least 1 DDX41 variant (MAF < 0.1%) are identified in 9821 unrelated and unselected adult patients from 6 medical centers and at ARUP Laboratories. Among these patients with HM, 3583 are diagnosed with AML, 2160 with MDS, 1030 with MPN, and 3048 with others including cytopenia and other myeloid and lymphoid neoplasms. These DDX41 variants are further classified into somatic variants alone (variants with a VAF < 40% in isolation) and presumed germline variants (VAFs of 40% or above, with or without concurrent somatic DDX41 variants). The germline variants are further classified into CV (PV/LPV, n = 116) and VUS (n = 60), according to the proposed gene-specific diagnostic criteria, modified from the ACMG guidelines.20 Among the 116 patients with germline DDX41 CV, 66 are diagnosed with AML, 28 with MDS, 4 with MPN, and 18 with cytopenia (others). Similarly, among the 60 patients with germline VUS, 18 are diagnosed with AML, 12 with MDS, 11 with MPN, and 19 with others. Among others, 4 are diagnosed with B-cell LPD, 1 with MM, and 14 with cytopenia. In addition, we select 4307 adult patients with HM (age of 18 years or above) with wild-type DDX41 (DDX41), confirmed by NGS testing at ARUP laboratories during the same time period. Among these control patients (DDX41), 1365 have a documented AML diagnosis, and the remaining cases include 1109 MDS, 479 MPN, and 1354 others, most of which are cytopenia, similar to those in the cohort of 9821 patients described above. Patients’ age, sex, and cytogenetic and molecular profiles are summarized and sorted by each distinct MN entity and correlated with their DDX41 genotypes (short double-headed arrows indicate the epidemiologic and molecular profile comparisons in between DDX41+ CV, VUS, and DDX41 cohorts). Furthermore, we summarize the OS in patients with AML and MDS who were treated at Huntsman Cancer Institute and other medical centers in comparison with the age-matched cohorts (long double-headed arrows indicate the OS comparisons in between DDX41+ CV, VUS, and DDX41 cohorts). #Of note, 24 patients with AML with DDX41 CV have been documented in a previous study.8 (B) Graphic distribution of variants identified in this study, positioned on the protein sequence (NM_016222.4) with major functional domains (red, DEAD domain; green, helicase domain; orange, Znf, zinc finger domain; teal, NLS, nuclear localization signaling domain) is separated by germline (above-protein sequences) or somatic (below) variants. Each symbol in germline variants represents 1 patient. The underline indicates novel variants reported in this study. Red, DDX41 CV; blue, DDX41 VUS; orange, p.R164W, likely CV in lymphoma. *With specific exceptions (eg, p.M155I and p.P510S).

Close modal
Figure 2.

Summary of DDX41 variants and ethnic difference in germline CV identified in this study and literature. (A) Summary of DDX41 germline (above the protein sequence) and somatic (below the protein sequence) variants. The colors in the boxes above and the horizontal bars below the protein sequence are designated corresponding to the protein functional domains. Numbers in parentheses alone or before a slash indicate the total times of a certain variant was reported in literature including those reported in this study, whereas numbers after a slash represent variants seen in the current study. Red, CV; blue, VUS; orange, likely CV for lymphoma. (B-E) Ethnic difference in DDX41 CV as data combined in this study and collected and reanalyzed in literature.28,29 (B) Germline variants of p.M1I (98%, 39 White and 1 Asian patients) and p.D140fs (95%, 23 White and 1 African American patients) are the leading CVs in White patients. (C) Missense germline variants, although uncommon in Whites (15%), are seen in 49% of Asian patients with HM (P < .0001). (D) p.Y592C (92%, 11 Asians and 1 non-Asian) and p.A500fs (100%, 10 all in Asian) appear the most common germline CV in Asian patients. (E) Somatic DDX41 variants alone, in the absence of associated germline variants, appear more frequently in Asian than White patients (36% in Asian vs 15% in White, P = .0007). ***, P < .001; ****, P < .0001.

Figure 2.

Summary of DDX41 variants and ethnic difference in germline CV identified in this study and literature. (A) Summary of DDX41 germline (above the protein sequence) and somatic (below the protein sequence) variants. The colors in the boxes above and the horizontal bars below the protein sequence are designated corresponding to the protein functional domains. Numbers in parentheses alone or before a slash indicate the total times of a certain variant was reported in literature including those reported in this study, whereas numbers after a slash represent variants seen in the current study. Red, CV; blue, VUS; orange, likely CV for lymphoma. (B-E) Ethnic difference in DDX41 CV as data combined in this study and collected and reanalyzed in literature.28,29 (B) Germline variants of p.M1I (98%, 39 White and 1 Asian patients) and p.D140fs (95%, 23 White and 1 African American patients) are the leading CVs in White patients. (C) Missense germline variants, although uncommon in Whites (15%), are seen in 49% of Asian patients with HM (P < .0001). (D) p.Y592C (92%, 11 Asians and 1 non-Asian) and p.A500fs (100%, 10 all in Asian) appear the most common germline CV in Asian patients. (E) Somatic DDX41 variants alone, in the absence of associated germline variants, appear more frequently in Asian than White patients (36% in Asian vs 15% in White, P = .0007). ***, P < .001; ****, P < .0001.

Close modal
Table 1.

Molecular and cytogenetic profiles of 205 individuals with DDX41 variants

PatientDiagnosisgl DDX41gl DDX41VAFTiers DDX41s DDX41VAFTiersConcomitant variantsVAF (%)TierCytogenetics
          ASXL1 c.1900_1922del, p.E635fs 19  
1* AML c.3G>A p.M1I 44 c.1574G>A p.R525H PFH6 c.811G>A, p.E271K 12 46,XX[20] 
          CUX1 c.607 + 1G>A, p.?  
          CUX1 c.2786del, p.P929fs  
2 AML c.3G>A p.M1I 46 c.1574G>A p.R525H ASXL1 c.1900_1922del, p.E635fs 46,XX[20] 
          PHF6 c.940A>T, p.I314F  
          CUX1 c.2485C>T, p.Q829*  
AML c.3G>A p.M1I 48 c.1574G>A p.R525H ASXL1 c.1627G>T, p.E543* NI 
          PHF6 c.880A>G, p.I294V  
4 AML c.3G>A p.M1I 48 c.1574G>A p.R525H 16 ASXL1 c.1779dup, p.C594fs 45,X,-Y[6]/46,XY[14] 
          SF3B1 c.2098A>G, p.K700E  
          JAK2 c.1849G>T, p.V617F  
AML c.3G>A p.M1I 48 c.1574G>A p.R525H ASXL1 c.2905_ 2926delinsTACTGTT, p.D969_N971delinsYC* NI 
          TP53 c.850A> C, p.T284P   
          KMT2A c.2830_2847dup, p.D944_T949dup 33  
6*, AML c.3G>A p.M1I 47 c.1574G>A p.R525H ASXL1 c.1761_1768del, p.Q588fs 20 45,XY,del(5)(q15q35), der(7;16)(q10;q10), add(10)(p11.2), 
          BCORL1 c.1339C>T, p.Q447* add(10)(q24),+20, -22[13]/45,XY,-4, del(5)(q15q35), 
          TP53 c.743G>A, p.R248Q der(7)t(7;9)(p11.2;q13), add(12)(p12), -13,+14, 
          TP53 c.817C>T, p.R273C add(14)(q32), add(18)(q21),-22,+mar[7] 
AML c.3G>A p.M1I 45 c.1574G>A p.R525H ASXL1 c.3030_3031delinsTT, p.E1011* 46,XY[20] 
          ASXL1 c.2122del, p.Q708fs  
AML c.3G>A p.M1I 51 c.1574G>A p.R525H ASXL1 c.1960dup, p.A654fs 46,XY[20] 
9 AML c.3G>A p.M1I 58 c.1574G>A p.R525H ASXL1 c.3824C>G, p.S1275* 11 46,XY[20] 
          ZRSR2 c.202_203del, p.R68fs  
10*, AML c.3G>A p.M1I 47 c.1574G>A p.R525H DNMT3A c.1015-1G>C, p.? 46,XX[20] 
          SETBP1 c.1977T>A, p.D659G  
11 AML c.3G>A p.M1I 51 c.1574G>A p.R525H RUNX1 c.385C>G, p.L129V 46,XX[20] 
          JAK2 c.1849G>T, p.V617F  
12 AML c.3G>A p.M1I 52 c.1574G>A p.R525H RUNX1 c.776_777del, p.F259* 46,XX[20] 
          NF1 c.2033dupC, p.I679fs 45  
13 AML c.3G>A p.M1I 50 c.1574G>A p.R525H    46,XX[20] 
14 AML c.3G>A p.M1I 46 c.1574G>A p.R525H    trisomy 8 
15 AML c.3G>A p.M1I 47 c.1574G>A p.R525H    46,XX[20] 
16 AML c.3G>A p.M1I 50 c.1574G>A p.R525H    NI 
17 AML c.3G>A p.M1I 43 c.1574G>A p.R525H    46,XY[20] 
18 AML c.3G>A p.M1I 49 c.1574G>A p.R525H    46,XY[19] 
19* AML c.3G>A p.M1I 47 c.1574G>A p.R525H 11    46,XY[20] 
20*, AML c.3G>A p.M1I 44 c.971G>A p.C264Y    45,X,-Y[6]/46,XY[14] 
21 AML c.3G>A p.M1I 45 c.1037C>T p.A346P    46,XY[20] 
22 AML c.3G>A p.M1I 50     ASXL1 c.1934dup, p.G646fs 13 46, XY[20] 
          KRAS c.35G>T, p.G12V 13  
23 AML c.3G>A p.M1I 41     ASXL1 c.1934dup, p.G646fs 28 45, XY, −7[16]/46, XY, [4]. 
24 AML c.3G>A p.M1I 49     RUNX1 c.743dupA, p.N248fs 21 46,XY, del(5)(q13q33)[2]/47, sl,+21[2]/ 
          TP53 c.827C>A, p.A276D 46∼48, sdl1,t(1;2) (p36.3;q31), t(1;6)(32P;q27)t(1;2), +mar[cp16] 
25 AML c.323del p.K108fs 51 c.1574G>A p.R525H TET2 c.3965T>A, p.L1322Q 46,XY[20] 
          SRSF2 c.284C>T, p.P95L 13  
          TP53 c.743G>A, p.R248Q  
26 AML c.415_418dup p.D140fs 49 c.1574G>A p.R525H 22 ASXL1 c.1924_1928del, p.G644fs 46,XX[20] 
          TET2 c.2456dup, p.Y819*  
          TET2 c.2459G>A, p.S820N  
          SH2B3 c.1200dup, p.Y401fs 36  
27 AML c.415_418dup p.D140fs 43 c.1574G>A p.R525H ASXL1 c.1900_1922del, p.E635fs 46,XY[20] 
          DNMT3A c.976C>T, p.R326C 12  
          CSF3R c.1640G>A, p.W547* 48   
28 AML c.415_418dup p.D140fs 43 c.1574G>A p.R525H ASXL1 c.1919_1929del, p.A640fs 46,XY[20] 
          PHF6 c.834G>T, p.M278I 13  
29 AML c.415_418dup p.D140fs 50 c.1574G>A p.R525H ASXL1 c.2275_2284del, p.Gln760fs 46,XY, inv(11)(q21q23)[20] 
          TP53 c.830G>A, p.C277Y  
30*, AML c.415_418dup p.D140fs 45 c.1574G>A p.R525H 16 TET2 c.1847del, p.P616fs 46,XY[20] 
          TET2 c.782_786del, p.S261*  
31 AML c.415_418dup p.D140fs 45 c.1574G>A p.R525H TET2 c.5577_5578del, p.I1859fs NI 
32 AML c.415_418dup p.D140fs 46 c.1574G>A p.R525H TET2 c.2340dup, p.V781fs NI 
          DDX41 c.138 + 5G>T, p.? 47  
33 AML c.415_418dup p.D140fs 46 c.1574G>A p.R525H CUX1 c.2459G>A, p.W820* NI 
34 AML c.415_418dup p.D140fs 46 c.1574G>A p.R525H    46,XX[20] 
35 AML c.415_418dup p.D140fs 42 c.1574G>A p.R525H    46,XY[20] 
36 AML c.415_418dup p.D140fs 43 c.1589G>A p.G530D 35 ASXL1 c.3001dup, p.T1001fs 34 NI 
          EZH2 c.349C>T, p.Q117* 31  
          SETBP1 c.2608G>A, p.G870S  
37 AML c.415_418dup p.D140fs 46        NI 
38 AML c.415_418dup p.D140fs 49        46,X,-X,der1, (X;1)(p11.3;p36.3), inv9(p12q13)c, +14[4]/46, XX, inv9c[16] 
39 AML c.415_418dup p.D140fs 47        46,XY[20] 
40 AML c.415_418dup p.D140fs 46        46,XY[19] 
41 AML c.415_418dup p.D140fs 44        NI 
42 AML c.415_418dup p.D140fs 46        46,XX[20] 
43 AML c.415_418dup p.D140fs 44        46,XY[20] 
44 AML c.668dup p.I224fs 45 c.1574G>A p.R525H 16 ASXL1 c.2541del, p.T848fs 17 NI 
          PHF6 c.138 + 1G>A, p.?  
          PHF6 c.255C>G, p.C85W  
45 AML c.847del p.L283fs 43 c.1574G>A p.R525H    NI 
46 AML c.946_947del p.M316fs 52 c.1574G>A p.R525H CUX1 c.3855del, p.S1286fs 46,XY[20] 
47 AML c.1394del p.G465fs 46 c.1574G>A p.R525H DNMT3A c.2026C>T, p.R676W 46,XY[20] 
          ASXL1 c.2423_2427del, p.P808fs  
          ASXL1 c.2060_2061del, p.C687fs  
48 AML c.121C>T p.Q41* 48 c.1574G>A p.R525H ASXL1 c.1900_1922del, p.E635fs 10 N/A 
          DNMT3A c.2256_2263del, p.W753* 15  
          PHF c.820C>T, p.R274* 22  
49 AML c.121C>T p.Q41* 45     TET2 c.4133G>A, p.C1378Y 44 NI 
          GATA2 c.599dup, p.S201*  
          KDM6A c.3704 + 1G>C, p.? 67  
          ZRSR2 c.505C>T, p.R169* 93  
          NPM1 c.860_863dup, p.W288fs 35  
50 AML c.475C>T p.R159* 51 c.1589G>A p.G530D U2AF1 c.101C>A, p.S34Y 46,XY[20] 
51 AML c.931C>T p.R311* 49 c.1589G>A p.G530D PHF6 c.730-1G>A, p.? NI 
          DNMT3A c.2255_2257del, p.F752del  
52 AML c.1105C>T p.R369* 46 c.1574G>A p.R525H 18 ASXL1 c.1900_1922del, p.E635fs 13 46,XY[20] 
          SETBP1 c.2602G>A, p.D868N  
          SETBP1 c.2608G>A, p.G870S  
          SETBP1 c.2612T>C, p.I871T  
53 AML c.1105C>T p.R369* 47 c.1574G>A p.R525H TET2 c.3632G>A, p.C1211Y NI 
          SH2B3 c.794G>A, p.R265Q 48  
54 AML c.1108C>T p.Q370* 48 c.1588G>A p.G530S 25 JAK2 c.1849G>T, p.V617F 22 46,XY[20] 
55 AML c.1504C>T p.Q502* 49 c.1035G>C p.E345D 10 ASXL1 c.2693G>A, p.W898* 45,X,-Y[14]/46,XY[6] 
56 AML c.645-1G>T p.? 45 c.1574G>A p.R525H ASXL1 c.3824C>G, p.S1275* 46,XY[20] 
          DNMT3A c.1572T>A, p.C524*  
57 AML c.992_994del p.K331del 48 c.1035G>C p.E345D 14 ASXL1 p.E635fs 46,XY, der(7)add(7)(p13) add(7)(q11.2)[10]/45,XY, -der(7)[5]/46,XY[13] 
          EZH2 p.N546K  
58*, AML c.646C>G p.L216V 51 c.1035G>C p.E345D 30 DNMT3A c.2656C>T, p.Q886* 31 NI 
59 AML c.653G>A p.G218D 50 c.1589G>A p.G530D TP53 c.488A>G, p.Y163C NI 
          RUNX1 c.288_291delinsAAA, p.N96fs  
          DNMT3A c.1627G>T, p.G543C  
          DNMT3A c.1578C>G, p.Y526*  
60 AML; breast cancer c.773C>T p.P258L 56 c.1574G>A p.R525H 15    46,XY[20] 
61 AML c.967C>T p.R323C 45 c.1574G>A p.R525H TET2 c.3585_3588delnsAG, p.A1196fs NI 
          SRSF2 c.284C>A, p.P95H  
62 AML c.1046T>A p.M349K 45        46,XY[20] 
63 AML c.1046T>A p.M349K 50        46,XY[20] 
64 AML c.1105C>G p.R369G 48 c.1574G>A p.R525H    46,XX[20] 
65 AML c.1399G>T p.D467Y 45 c.1589G>A p.G530D 13 ASXL1 c.1934dup, p.G646fs 13 NI 
          ASXL1 c.1900_1922del, p.E635fs  
          EZH2 c.2022G>C, p.L674F  
          SETBP1 c.2608G>A, p.G870S  
          EZH2 c.2197T>A, p.Y733N 10  
          SETBP1 c.2612T>C, p.I871T  
66 AML c.1574G>A p.R525H 54        NI 
67 MDS c.3G>A p.M1I 45 c.1574G>A p.R525H DNMT3A c.1010C>G, p.S337* NI 
68 MDS c.3G>A p.M1I 49 c.1574G>A p.R525H    46,XY[20] 
69 MDS c.3G>A p.M1I 43 c.1574G>A p.R525H    46,XX[20] 
70 MDS c.3G>A p.M1I 53 c.1574G>A p.R525H    46,XY[20] 
71 MDS c.3G>A p.M1I 50 c.694A>G p.T232A    46,XY[20] 
72 MDS c.3G>A p.M1I 49 c.962C>T p.P321L 14 DNMT3A c.1792C>T, p.598* 14 46,XY[20] 
73 MDS c.3G>A p.M1I 49 c.962C>T p.P321L 14    46,XY[20] 
74 MDS c.3G>A p.M1I 48 c.1037C>T p.A346P    46,XY[20] 
75 MDS c.3G>A p.M1I 46 c.1643T>A p.L548H    46,XX[20] 
76 MDS; MM; MBL c.3G>A p.M1I 50     DNMT3A c.2645G>A, p.R882H 15 46,XX[20] 
77 MDS c.3G>A p.M1I 46     PTPN11 c.215C>T, p.A72V 42 47,XY,del(5)(q13q33), +21[2]/48,sl,t(9;21) (q10;q10), +21[12]/ 
          RUNX1 c.1036dup, p.R346fs 32  
78 MDS c.3G>A p.M1I 49     JAK2 c.1849G>T, p.V617F 46,XY[20] 
79 MDS c.3G>A p.M1I 49        45,X,-Y[6]/46,XY[14] 
80 MDS c.415_418dup p.D140fs 44 c.1574G>A p.R525H 10 ASXL1 c.4127dup, p.P1377fs 12 NI 
81 MDS c.415_418dup p.D140fs 45 c.794C>T p.P265L 27 DNMT3A c.1579C>T, p.Q527* 46,XY[20] 
82 MDS c.1496dup p.A500fs 47 c.1660G>A p.E554K    46,XY[20] 
83 MDS c.130C>T p.Q44* 60 c.1126C>T p.A376T DNMT3A c.2207G>A, p.R736H 46,XX[20] 
84 MDS c.475C>T p.R159* 47 c.1589G>A p.G530D    NI 
      c.1574G>A p.R525H     
      c.1588G>A p.G530S     
85 MDS c.931C>T p.R311* 51 c.1574G>A p.R525H SRSF2 c.284C>T, p.P95L NI 
86 MDS c.931C>T p.R311* 50 c.1574G>A p.R525H    NI 
87 MDS c.992_994del p.K331del 43 c.1574G>A p.R525H 14 TET2 c.3866G>T, p.C1289F 46,XY[20] 
88 MDS c.992_994del p.K331del 48        46,XY[20] 
89 MDS c.566C>T p.P189L 49 c.1574G>A p.R525H EZH2 c.434T>C, p.F145S NI 
90 MDS c.710T>G p.L237W 49 c.1589G>A p.G530D 13    46,XY[20] 
91 MDS c.1016G>A p.R339H 51     IDH1 c.605del, p.S202fs 31 45,X,-Y/46,XY[15] 
92 MDS c.1015C>T p.R339C 49 c.680C>T p.T227M 13 TET2 c.1793del, p.N598fs 46,XY[20] 
93 MDS c.1018T>A p.Y340N 47 c.1574G>A p.R525H CUX1, c.2389del, p.Q797fs 13 46,XY[20] 
          EZH2 c.371A>G, p.D124G 15  
94* MDS c.1105C>G p.R369G 47 c.645-1G>A p.? TET2 c.1263del; p.G422fs 31 NI 
          TET2 c.3860_3869del, p.F1287fs  
95 Pancytopenia c.3G>A p.M1I 47 c.1574G>A p.R525H 14 JAK2 c.1849G>T, p.V617F 15 NI 
          TET2 c.1648C>T, p.R550*  
96 Pancytopenia c.3G>A p.M1I 47 c.1574G>A p.R525H    NI 
97 Pancytopenia c.415_418dup p.D140fs 46 c.1574G>A p.R525H    46,XY, del(20)(q11.2q13.1) [1]/46,XY[20] 
98 Pancytopenia c.430del p.T144fs 45 c.1574G>A p.R525H ASXL1c.4002del, p.S1335fs 21 NI 
          TP53 c.586C>T, p.R196*  
          TP53 c.916C>T, p.R306*  
          IDH2 c.419G>A, p.R140Q  
99 Pancytopenia c.946_947del p.M316fs 47 c.1574G>A p.R525H ASXL1 c.2644C>T, p.Q882* 46,XY[20] 
          PHF6 c.941T>C, p.I314T 11  
100 Pancytopenia c.1354del p.L452fs 48 c.1574G>A p.R525H DNMT3A c.929T>C, p.I310T 46,XY[20] 
101 Pancytopenia c.475C>T p.R159* 48 c.1574G>A p.R525H 12 SRSF2 c.284C>A, p.P95H 10 NI 
          STAG2 c.1243C>T, p.H415Y 16  
102 Pancytopenia c.1628C>G p.S543* 50 c.1574G>A p.R525H ASXL1 c.1934dup, p.G646fs NI 
          RUNX1 c.540del, p.F180fs  
          PHF6 c.941T>C, p.I314T  
          KDM6A c.2665del, p.T889fs  
103 Pancytopenia c.649T>C p.S217P 48 c.1589G>A p.G530D ASXL1 c.2467_2468insA, p.L823fs NI 
          KRAS c.437C>T, p.A146V  
          SRSF2 c.47T>A, p.L16H  
104 Pancytopenia c.773C>T p.P258L 47 c.1574G>A p.R525H KDM6A c.3107delT, p.F1036fs NI 
          SRSF2 c.284C>A, p.P95H  
105 Pancytopenia c.776A>G p.Y259C 48 c.1574G>A p.R525H FBXW7 c.62G>A, p.G21D 19 46,XY[20] 
106 Pancytopenia c.1016G>T p.R339L 50 c.1574G>A p.R525H    NI 
107 Thrombocytopenia c.415_418dup p.D140fs 45 c.1574G>A p.R525H 10 ASXL1 c.1900_1922del, p.E635fs NI 
          CUX1 c.2161C>T, p.Q721*  
          SMC1A c.2132G>A, p.R711Q  
108 Thrombocytopenia c.1586_ 1587delCA p.T529fs 52     TP53 c.1024C>T, p.R342* 40 46,XX[20] 
109 Thrombocytopenia c.3G>A p.M1I 45 c.962C>T p.P321L 23 RUNX1 c.281G>A, p.S94N 30 NI 
          TP53 c.742C>T, p.R248W 35  
          SRSF2 c.284C>G, p.P95R 26  
110 Neutropenia c.3G>A p.M1I 48 c.1574G>A p.R525H 10    NI 
111 Neutropenia c.3G>A p.M1I 47 c.1574G>A p.R525H    NI 
112 Anemia c.1105C>T p.R369* 45 c.1574G>A p.R525H ASXL1 c.1934dup, p.G646fs 46,XX,+1, der(1;7)(q10;p10) [16]/46,XX[4] 
          EZH2 c.786dup, p.N263fs  
          SETBP1 c.2613_2614delinsGC, p.I871_G872delinsMR  
113 MPN c.415_418dup p.D140fs 49        46,XX[20] 
114 MPN c.946_947del p.M316fs 48        NI 
115 MPN c.916C>T p.Q306* 48        46,XX[20] 
116 MPN c.1141A>T p.K381* 44 c.1574G>A p.R525H CUX1 c.988C>T, p.Q330* 46,XY[20] 
117 AML c.6G>T p.E2D 48     FLT3 c.1805_1806ins42, p.K602_W603ins14 n/a 46,XX[20] 
          NPM1 c.863_864insCCTG, p.W288fs 35  
          WT1 c.1141_1144dup, p.A382fs  
118* AML c.55G>A p.G19R 48     FLT3 ITD c.1837 +  11_1837 + 12ins114, p.? n/a NI 
          NPM1 c.863_864insCCTG, p.W288fs 43  
          IDH1 c.395G>A, p.R132H 41  
          DNMT3A c.1627G>T, p.G543C 42  
119* AML c.97T>C p.Y33H 45     FLT3 c.1770_1811dup42, p.W603_E604ins14 n/a NI 
          NPM1 c.860_863dup, p.W288fs 18  
          DNMT3A c.860_863dup, p.W288fs 27  
          TET2 c.2490dup, p.Q831fs 23  
120 AML c.465G>A p.M155I 47     NPM1 c.860_863dup, p.W288fs 46,XY[20] 
          SRSF2 c.284C>G, p.P95R 28  
          TET2 c.2244dup, p.Q749fs 44  
121 AML c.465G>A p.M155I 47     NPM1 c.863_864insCTTG, p.W288Cfs 33 46,XY[20] 
          GATA2 c.599dup, p.S201*  
122* AML c.491G>A p.R164N 48 c.1774A>T p.I592F 35 NPM1 c.863_864insCTTG, p.W288Cfs 33 46,XX[20] 
123 AML c.1528C>T p.P510S 48     NPM1 c.860_863dup, p.W288fs 34 46,XY[20] 
          SRSF2 c.284C>T, p.P95L 42  
          KRAS c.35G>A, p.G12D 11  
124 AML c.380T>A p.M127K 49     FLT3 c.2505T>G, p.D835E 46,XY,+12, der(17)t(17;18) (p10;q10),-18[8] 
          TP53 c.400T>A, p.F134I 46  
          TP53 c.458_462del, p.P153fs  
          U2AF1 c.101C>A, p.S34Y  
          KRAS c.351A>T, p.K117N 27  
125 AML c.465G>A p.M155I 47     FLT3 p.N841K 46,XY[20] 
          KRAS c.35G>T, p.G12V  
126 AML c.199G>C p.G67R 50     ASXL1 c.2959G>T, p.G987* 47 46,XY[20] 
          CEBPA c.985_986insCC, E329fs 42  
          CEBPA c.68del, p.P23fs 46  
          IDH2 c.418C>T, p.R140W 48  
          JAK2 c.1849G>T, p.V617F  
127 AML c.199G>C p.G67R 48     ASXL1 c.2959G>T, p.G987* 22 46,XY[20] 
          IDH2 c.418C>T, p.R140W 25  
          SRSF2 c.284C>A, p.P95H 28  
          STAG2 c.1196 + 1G>A, p.?  
          STAG2 c.1999del, p.R667fs 15  
128* AML c.465G>A p.M155I 51        48,XY,+8,+22[20] 
129 AML c.883G>A p.A295T 53     TP53 c.743G>A, p.R248Q 35 44,XY,-3,add(5) (q11.2),+8, add(8)(q22), der(12;17)(q10;q10), 
          TP53 c.818G>A, p.R273H 15 −14,i(14)(q10), i(21)(q10)[12]/ 43-45, sl,-add(5)(q11.2), i(5)(q10)[cp4]/88 < 4n>,slx2[1] 
130 AML c.893T>C p.I298T 49     DNMT3A c.989G>A, p.W330* NI 
          TP53 c.844C>T, p.R282W 61  
          TP53 c.535C>T, p.H179Y  
          PTPN11 c.1504T>C, p.S502P  
131 AML c.1063G>A p.E355K 47     PHF6 c.418 + 2T>C, p.? 21 46,XX[7] 
          KMT2A c.10462C>T, p.Gln3488* 25  
132 AML c.465G>A p.M155I 48     NRAS c.181C>A, p.Q61K 15 46,XY,inv(16) (p13.1q22)[20] 
133 AML c.465G>A p.M155I 47     CSF3R c.1843A>G, p.T615A
CSF3R c.1853C>T, p.T618I 
22
1
46,XX, der(8)t(8;21) (q22;q22), der(8)?(8pter-> 8p22::?:: 8p11.2-> 8q?13::8q22 ->8qter), der(21)(21pter-> 21q22::8?q13-> 8q?22:: 8q22-> 8qter)[7]/45, sl,-X[8]/46,XX[5] 
134 AML c.138 + 5G>A p.? 50     NRAS c.181C>A, p.Q61Lys 39 47,XY, +8,inv(16) (p13.1q22)[20] 
135 MDS c.367G>A p.G123S 48     ASXL1 c.2239_2244delinsCC, p.S747fs 42 46,XX[20] 
          ASXL1 c.1934dup, p.G646fs  
          TET2 c.5543C>G, p.S1848*  
          EZH2 c.1119dup, p.T374fs  
          IDH2 c.419G>A, p.R140Q 31  
          SF3B1 c.2347G>A, p.E783K  
          JAK2 c.1849G>T, p.V617F  
136 MDS c.465G>A p.M155I 43     JAK2 c.1849G>T, p.V617F 27 NI 
          DNMT1 c.4663G>A, p.V1555M 32  
          SH2B3 c.127C>T, p.R43C 35  
137 MDS c.644 + 5G>C p.? 43     SH2B3 c.947_953del, p.E316fs 21 47,XY, +9,del(20) (q11.2q13.1)[19]/46,XY[1] 
          JAK2 c.1849G>T, p.V617F 40  
138 MDS c.523G>A p.G175S 48     NRAS c.34G>A, p.G12S 44 NI 
          TET2 c.2290dup, p.Q764fs 50  
          GATA2 c.599del, p.G200fs  
          SRSF2 c.284C>A, p.P95H 47  
139 MDS c.529C>T p.P177S 45     SMC1A c.197A>G, p.H66R NI 
          BCOR c.441dup, p.Ile148fs 50  
          U2AF1 c.101C>T, p.S34F 37  
          RUNX1 c.601del, p.R201fs 10  
140 MDS c.1301C>T p.P434L 49     GATA2 c.599dup; p.S201* 31 46,XY[20] 
          NPM1 c.867_868insAGGA, p.W290fs 48  
141 MDS c.1528C>T p.P510S 48     ASXL1 c.1934dup, p.G646fs 35 NI 
          CBL c.800G>A, p.G267D  
142 MDS c.1704C>G p.C568W 48     KIT c.2446_2447delinsAT, p.D816I 10 NI 
          KIT c.2447A>T, p.D816V  
          PTPN11 c.154A>G, p.T52A  
          PTPN11 c.1508G>A, p.G503E  
143 MDS/MPN c.1760G>C p.G587A 47     CSF3R c.1853C>T, p.T618I 47,XY,+8[20] 
          KRAS c.436G>C, p.A146P 37  
          ASXL1 c.1900_1922del, p.E635fs 44  
          STAG2 c.1191dup, p.Q399fs 92  
144 MDS c.1276G>A p.E426K 49     SRSF2 c.284C>A, p.P95H 46 NI 
          IDH2 c.419G>A, p.R140Q 45  
145 MDS c.1528C>T p.P510S 48     TP53 c.734G>A, p.G45D 20 NI 
146 MDS c.1663G>A p.A555T 43     TP53 c.706dup, p.Y236fs 39 44-47,XY, del(5)(q22q35), -7,der(11)t(11;13) (p15;q14), 
          TP53 c.713G>A, p.C238Y 37  
147 Pancytopenia c.27G>A p.K9K 43        NI 
148 Pancytopenia c.465G>A p.M155I 50     SF3B1 c.1996A>G, p.K666E 19 45,X,-Y[14]/46,XY[6] 
          U2AF1 c.101C>T, p.S34F  
149 Pancytopenia c.556A>T p.M186L 47     ETNK1 c.731A>G, p.N244S 24 NI 
 Small cell carcinoma         KRAS c.468C>G, p.F156L 18  
150 Pancytopenia c.656G>A p.R219H 49 c.679A>G p.T227A 30    46,XY[20] 
151 Pancytopenia c.845G>A p.R282H 40     TP53 c.377A>G, p.Y126C 67 NI 
          BRAF c.1391G>T, p.G464V 38  
152 Pancytopenia c.881G>T p.C294F 48     CBL c.1211G>A, p.C404Y NI 
153 Pancytopenia c.1477T>G p.S493A 47     ASXL1 c.1900_1922del, p.E635fs 15 NI 
          ASXL1 c.1934dup, p.G646fs  
          ASXL1 c.2295del, p.S766fs  
          SH2B3 c.703C>G, p.R235G 16  
154 Thrombocytopenia c.465G>A p.M155I 50        46,XY[20] 
155 Thrombocytopenia c.707C>T p.T236M 47        NI 
156 Thrombocytopenia c.138 + 5G>A p.? 54        NI 
157 Thrombocytopenia c.644 + 5G>C p.? 47     RAD21 c.507_508del, p.E169fs 38 NI 
          NRAS c.35G>A, p.G12D 20  
          TP53 c.818G>A, p.R273H 31  
          TP53 c.559 + 1G>A, p.? 42  
158 Neutropenia c.138 + 5G>A p.? 50        NI 
159 Anemia c.751C>T p.P251S 46        46,XX[20] 
160 Anemia c.1748C>T p.A583V 47     PTPN11 c.227A>T, p.E76V 45 NI 
161 MPN, PV c.23G>A p.R8Q 47     JAK2 c.1849G>T, p.V617F 45 46,XY[20] 
162 MPN, PV c.94G>A p.D32N 48     JAK2 c.1849G>T, p.V617F 85 46,XY[20] 
163 MPN, ET c.398C>T p.A133V 44     CALR c.1122_1125del, p.K374fs 44 NI 
          U2AF1 c.470A>G, p.Q157R 45  
          ZRSR2 c.236_237del, p.E79Afs 87  
164 MPN c.644T>C p.I215T 48     JAK2 c.1849G>T, p.V617F 26 NI 
          ASXL1 c.1934dup, p.G646fs  
165 MPN c.647T>C p.L216P 48 c.1655T>G p.L552R 14 JAK2 c.1849G>T, p.V617F 12 NI 
          ASXL1 c.1900_1922del, p.E635fs  
166 MPN, ET c.707C>T p.T236M 50     JAK2 c.1849G>T, p.V617F 18 46,XY[20] 
          SF3B1 c.2110A>T, p.I704F 15  
167 MPN c.1471G>A p.V491I 52     JAK2 c.1849G>T, p.V617F 47 46,XY[20] 
          TP53 c.743G>A, p.R248Q  
          TP53 c.742C>T, p.R248W  
          NF1 c.2035del, p.I679fs 15  
168 MPN, ET c.1630G>T p.V544L 49     JAK2 c.1849G>T, p.V617F 26 46,XY[20] 
          SF3B1 c.1997A>C, p.K666T 16  
169 MPN, ET c.138 + 5G>T p.? 49        NI 
170 MPN, ET c.465G>A p.M155T 49        46,XX[20] 
171 MPN c.560A>G p.K187R 46        NI 
172 LPL with pancytopenia c.490C>T p.R164W 50     SF3B1 c.2098A>G, p.K700E 41 46,XY[20] 
173 γ heavy chain disease c.490C>T p.R164W 49        46,XY[20] 
 MYD88 negative LPL             
174 CLL; breast cancer c.490C>T p.R164W 47        46,XY[20] 
175 CLL c.751C>T p.P251S 50        46,XY, del(13)(q12;q22), add(18)(p11.20[4]/46,XY[16] 
176 MM c.29G>A p.R10Q 46     TP53 c.376T>G, p.Y126D 24 44∼46,X, add(X)(p10), del(6)(q21q23), i(8)(q10), 
          DNMT3A c.2339T>C, p.I780T 18 t(11;14)(q13;q32), del(13)(q12q22),- 14,-17,+1∼ 2mar[cp4]/46,XX[16] 
          KDM6A c.1354_1355del, p.G452fs 26  
177 AML     c.1574G>A p.R525H 12 ASXL1 c.1774C>T, p.Q592* 46,XY,t(1;4)? (q21;q31)[2]/46,XY[6] 
          PHF6 c.58del, p.C20fs 17  
178 AML     c.1574G>A p.R525H 25 ASXL1 c.2077C>T, p.R693* 46,XY[21] 
179 AML     c.1574G>A p.R525H CBL c.1211G>A, p.C404Y 15 46,XX[20] 
          U2AF2 c.766G>A, p.D256G 16  
180 AML     c.1574G>A p.R525H SH2B3 c.519_523del, p.R175fs 45,X,-Y[5]/46,XY[15] 
          PHF6 c.635G>T, p.C212F  
181 AML     c.1574G>A p.R525H 16 SRSF2 c.284C>A, p.P95H 17 46,X,del(X)?(q22q26)[2]/46,XX[18] 
182 AML     c.1574G>A p.R525H SETBP1 c.2602G>C, p.D868H NI 
      c.944A>G p.H315R CUX1 c.439C>T, p.R147*  
          STAG2 1693G>T, p.E565*  
          EZH2 c.1967C>T, p.A656V  
          ASXL1 c.2156del, p.E719fs  
183 AML     c.1589G>A p.G530D 15 ASXL1 c.2985del, p.H995fs 46,XY[20] 
      c.629A>G p.Q210R 15 ASXL1 c.2083C>T, p.R695*  
          ASXL1 c.2077C>T, p.H963*  
          EZH2 c.2213del, p.A738fs 15  
          NF1 c.3774G>C, p.W1258C 12  
184 AML; DLBCL     c.1589G>A p.G530D    46,XY[20] 
185 MDS     c.1574G>A p.R525H DNMT3A c.2645G>A, p.R882H 46,XX[11] 
186 MDS     c.1574G>A p.R525H    45,X,-Y[4]/46,XY[16] 
187 MDS     c.1574G>A p.R525H 10    46,XX[20] 
188 MDS     c.1574G>A p.R525H    46,XY[20] 
189 MDS     c.1574G>A p.R525H    46,XY[20] 
190 AML     c.157C>G p.R53G SF3B1 c.2098A>G, p.K700E 32 NI 
          PTPN11 c.214G>A, p.A72T 37  
191 AML     c.1760_ 1761TT p.G587V DNMT3A c.2645G>A, p.R882H 46,XY[20] 
          DNMT3A c.2095G>A, p.G699R  
192 MDS     c.622C>G p.Q208E 14 SETBP1 c.2608G>A, p.G870S 46,XY,del(7)(q22)[6]/46,XY[14] 
          SETBP1 c.2602G>A, p.D868N  
          DNMT3A c.2645G>A, p.R882H12 12  
          EVT6 c.313C>G, p.R105G  
          TET2 c.4079T>C, p.L1360P  
193 MDS     c.1199G>T p.R400L ASXL1 c.2324T>G, p.L775* 20 46,XY, del(5)(q31q33) [13]/46,XX[7] 
194 MDS     c.1369G>C p.V457L TP53 c.818G>A, p.R273H 30 46,XY, del(5)(q31q33) [14]/46,XX[6] 
          TP53 c.578A>C, p.H193P  
195 Neutropenia     c.1775T>A p.I592N SRSF2 c.284C>T, p.P95L NI 
          RUNX1 c.606dup, p.P203fs  
          TET2 c.330G>C, p.Lys110N  
196* Normal c.3G>A p.M1I 53        46,XY[20] 
197* Normal c.3G>A p.M1I 50        46,XX[20] 
198* Normal c.415_418dup p.D140fs 46        Not done 
199* Normal c.415_418dup p.D140fs 45        NI 
200* Normal c.415_418dup p.D140fs 56        46,XY[20] 
201* Normal c.992_994del p.K331del 47        Not done 
202 Normal∼(donor) c.931C>T p.311* 50        47,XX,+8[19] 
203 Normal∼(donor) c.465G>A p.M155I 46        46,XY[20] 
204 Normal∼(donor) c.1693G>A p.V565M 50        46,XY[20] 
205 Normal∼(donor) c.1585dup p.T529fs 46        44,XY,inc[1]//46,XX[16] 
PatientDiagnosisgl DDX41gl DDX41VAFTiers DDX41s DDX41VAFTiersConcomitant variantsVAF (%)TierCytogenetics
          ASXL1 c.1900_1922del, p.E635fs 19  
1* AML c.3G>A p.M1I 44 c.1574G>A p.R525H PFH6 c.811G>A, p.E271K 12 46,XX[20] 
          CUX1 c.607 + 1G>A, p.?  
          CUX1 c.2786del, p.P929fs  
2 AML c.3G>A p.M1I 46 c.1574G>A p.R525H ASXL1 c.1900_1922del, p.E635fs 46,XX[20] 
          PHF6 c.940A>T, p.I314F  
          CUX1 c.2485C>T, p.Q829*  
AML c.3G>A p.M1I 48 c.1574G>A p.R525H ASXL1 c.1627G>T, p.E543* NI 
          PHF6 c.880A>G, p.I294V  
4 AML c.3G>A p.M1I 48 c.1574G>A p.R525H 16 ASXL1 c.1779dup, p.C594fs 45,X,-Y[6]/46,XY[14] 
          SF3B1 c.2098A>G, p.K700E  
          JAK2 c.1849G>T, p.V617F  
AML c.3G>A p.M1I 48 c.1574G>A p.R525H ASXL1 c.2905_ 2926delinsTACTGTT, p.D969_N971delinsYC* NI 
          TP53 c.850A> C, p.T284P   
          KMT2A c.2830_2847dup, p.D944_T949dup 33  
6*, AML c.3G>A p.M1I 47 c.1574G>A p.R525H ASXL1 c.1761_1768del, p.Q588fs 20 45,XY,del(5)(q15q35), der(7;16)(q10;q10), add(10)(p11.2), 
          BCORL1 c.1339C>T, p.Q447* add(10)(q24),+20, -22[13]/45,XY,-4, del(5)(q15q35), 
          TP53 c.743G>A, p.R248Q der(7)t(7;9)(p11.2;q13), add(12)(p12), -13,+14, 
          TP53 c.817C>T, p.R273C add(14)(q32), add(18)(q21),-22,+mar[7] 
AML c.3G>A p.M1I 45 c.1574G>A p.R525H ASXL1 c.3030_3031delinsTT, p.E1011* 46,XY[20] 
          ASXL1 c.2122del, p.Q708fs  
AML c.3G>A p.M1I 51 c.1574G>A p.R525H ASXL1 c.1960dup, p.A654fs 46,XY[20] 
9 AML c.3G>A p.M1I 58 c.1574G>A p.R525H ASXL1 c.3824C>G, p.S1275* 11 46,XY[20] 
          ZRSR2 c.202_203del, p.R68fs  
10*, AML c.3G>A p.M1I 47 c.1574G>A p.R525H DNMT3A c.1015-1G>C, p.? 46,XX[20] 
          SETBP1 c.1977T>A, p.D659G  
11 AML c.3G>A p.M1I 51 c.1574G>A p.R525H RUNX1 c.385C>G, p.L129V 46,XX[20] 
          JAK2 c.1849G>T, p.V617F  
12 AML c.3G>A p.M1I 52 c.1574G>A p.R525H RUNX1 c.776_777del, p.F259* 46,XX[20] 
          NF1 c.2033dupC, p.I679fs 45  
13 AML c.3G>A p.M1I 50 c.1574G>A p.R525H    46,XX[20] 
14 AML c.3G>A p.M1I 46 c.1574G>A p.R525H    trisomy 8 
15 AML c.3G>A p.M1I 47 c.1574G>A p.R525H    46,XX[20] 
16 AML c.3G>A p.M1I 50 c.1574G>A p.R525H    NI 
17 AML c.3G>A p.M1I 43 c.1574G>A p.R525H    46,XY[20] 
18 AML c.3G>A p.M1I 49 c.1574G>A p.R525H    46,XY[19] 
19* AML c.3G>A p.M1I 47 c.1574G>A p.R525H 11    46,XY[20] 
20*, AML c.3G>A p.M1I 44 c.971G>A p.C264Y    45,X,-Y[6]/46,XY[14] 
21 AML c.3G>A p.M1I 45 c.1037C>T p.A346P    46,XY[20] 
22 AML c.3G>A p.M1I 50     ASXL1 c.1934dup, p.G646fs 13 46, XY[20] 
          KRAS c.35G>T, p.G12V 13  
23 AML c.3G>A p.M1I 41     ASXL1 c.1934dup, p.G646fs 28 45, XY, −7[16]/46, XY, [4]. 
24 AML c.3G>A p.M1I 49     RUNX1 c.743dupA, p.N248fs 21 46,XY, del(5)(q13q33)[2]/47, sl,+21[2]/ 
          TP53 c.827C>A, p.A276D 46∼48, sdl1,t(1;2) (p36.3;q31), t(1;6)(32P;q27)t(1;2), +mar[cp16] 
25 AML c.323del p.K108fs 51 c.1574G>A p.R525H TET2 c.3965T>A, p.L1322Q 46,XY[20] 
          SRSF2 c.284C>T, p.P95L 13  
          TP53 c.743G>A, p.R248Q  
26 AML c.415_418dup p.D140fs 49 c.1574G>A p.R525H 22 ASXL1 c.1924_1928del, p.G644fs 46,XX[20] 
          TET2 c.2456dup, p.Y819*  
          TET2 c.2459G>A, p.S820N  
          SH2B3 c.1200dup, p.Y401fs 36  
27 AML c.415_418dup p.D140fs 43 c.1574G>A p.R525H ASXL1 c.1900_1922del, p.E635fs 46,XY[20] 
          DNMT3A c.976C>T, p.R326C 12  
          CSF3R c.1640G>A, p.W547* 48   
28 AML c.415_418dup p.D140fs 43 c.1574G>A p.R525H ASXL1 c.1919_1929del, p.A640fs 46,XY[20] 
          PHF6 c.834G>T, p.M278I 13  
29 AML c.415_418dup p.D140fs 50 c.1574G>A p.R525H ASXL1 c.2275_2284del, p.Gln760fs 46,XY, inv(11)(q21q23)[20] 
          TP53 c.830G>A, p.C277Y  
30*, AML c.415_418dup p.D140fs 45 c.1574G>A p.R525H 16 TET2 c.1847del, p.P616fs 46,XY[20] 
          TET2 c.782_786del, p.S261*  
31 AML c.415_418dup p.D140fs 45 c.1574G>A p.R525H TET2 c.5577_5578del, p.I1859fs NI 
32 AML c.415_418dup p.D140fs 46 c.1574G>A p.R525H TET2 c.2340dup, p.V781fs NI 
          DDX41 c.138 + 5G>T, p.? 47  
33 AML c.415_418dup p.D140fs 46 c.1574G>A p.R525H CUX1 c.2459G>A, p.W820* NI 
34 AML c.415_418dup p.D140fs 46 c.1574G>A p.R525H    46,XX[20] 
35 AML c.415_418dup p.D140fs 42 c.1574G>A p.R525H    46,XY[20] 
36 AML c.415_418dup p.D140fs 43 c.1589G>A p.G530D 35 ASXL1 c.3001dup, p.T1001fs 34 NI 
          EZH2 c.349C>T, p.Q117* 31  
          SETBP1 c.2608G>A, p.G870S  
37 AML c.415_418dup p.D140fs 46        NI 
38 AML c.415_418dup p.D140fs 49        46,X,-X,der1, (X;1)(p11.3;p36.3), inv9(p12q13)c, +14[4]/46, XX, inv9c[16] 
39 AML c.415_418dup p.D140fs 47        46,XY[20] 
40 AML c.415_418dup p.D140fs 46        46,XY[19] 
41 AML c.415_418dup p.D140fs 44        NI 
42 AML c.415_418dup p.D140fs 46        46,XX[20] 
43 AML c.415_418dup p.D140fs 44        46,XY[20] 
44 AML c.668dup p.I224fs 45 c.1574G>A p.R525H 16 ASXL1 c.2541del, p.T848fs 17 NI 
          PHF6 c.138 + 1G>A, p.?  
          PHF6 c.255C>G, p.C85W  
45 AML c.847del p.L283fs 43 c.1574G>A p.R525H    NI 
46 AML c.946_947del p.M316fs 52 c.1574G>A p.R525H CUX1 c.3855del, p.S1286fs 46,XY[20] 
47 AML c.1394del p.G465fs 46 c.1574G>A p.R525H DNMT3A c.2026C>T, p.R676W 46,XY[20] 
          ASXL1 c.2423_2427del, p.P808fs  
          ASXL1 c.2060_2061del, p.C687fs  
48 AML c.121C>T p.Q41* 48 c.1574G>A p.R525H ASXL1 c.1900_1922del, p.E635fs 10 N/A 
          DNMT3A c.2256_2263del, p.W753* 15  
          PHF c.820C>T, p.R274* 22  
49 AML c.121C>T p.Q41* 45     TET2 c.4133G>A, p.C1378Y 44 NI 
          GATA2 c.599dup, p.S201*  
          KDM6A c.3704 + 1G>C, p.? 67  
          ZRSR2 c.505C>T, p.R169* 93  
          NPM1 c.860_863dup, p.W288fs 35  
50 AML c.475C>T p.R159* 51 c.1589G>A p.G530D U2AF1 c.101C>A, p.S34Y 46,XY[20] 
51 AML c.931C>T p.R311* 49 c.1589G>A p.G530D PHF6 c.730-1G>A, p.? NI 
          DNMT3A c.2255_2257del, p.F752del  
52 AML c.1105C>T p.R369* 46 c.1574G>A p.R525H 18 ASXL1 c.1900_1922del, p.E635fs 13 46,XY[20] 
          SETBP1 c.2602G>A, p.D868N  
          SETBP1 c.2608G>A, p.G870S  
          SETBP1 c.2612T>C, p.I871T  
53 AML c.1105C>T p.R369* 47 c.1574G>A p.R525H TET2 c.3632G>A, p.C1211Y NI 
          SH2B3 c.794G>A, p.R265Q 48  
54 AML c.1108C>T p.Q370* 48 c.1588G>A p.G530S 25 JAK2 c.1849G>T, p.V617F 22 46,XY[20] 
55 AML c.1504C>T p.Q502* 49 c.1035G>C p.E345D 10 ASXL1 c.2693G>A, p.W898* 45,X,-Y[14]/46,XY[6] 
56 AML c.645-1G>T p.? 45 c.1574G>A p.R525H ASXL1 c.3824C>G, p.S1275* 46,XY[20] 
          DNMT3A c.1572T>A, p.C524*  
57 AML c.992_994del p.K331del 48 c.1035G>C p.E345D 14 ASXL1 p.E635fs 46,XY, der(7)add(7)(p13) add(7)(q11.2)[10]/45,XY, -der(7)[5]/46,XY[13] 
          EZH2 p.N546K  
58*, AML c.646C>G p.L216V 51 c.1035G>C p.E345D 30 DNMT3A c.2656C>T, p.Q886* 31 NI 
59 AML c.653G>A p.G218D 50 c.1589G>A p.G530D TP53 c.488A>G, p.Y163C NI 
          RUNX1 c.288_291delinsAAA, p.N96fs  
          DNMT3A c.1627G>T, p.G543C  
          DNMT3A c.1578C>G, p.Y526*  
60 AML; breast cancer c.773C>T p.P258L 56 c.1574G>A p.R525H 15    46,XY[20] 
61 AML c.967C>T p.R323C 45 c.1574G>A p.R525H TET2 c.3585_3588delnsAG, p.A1196fs NI 
          SRSF2 c.284C>A, p.P95H  
62 AML c.1046T>A p.M349K 45        46,XY[20] 
63 AML c.1046T>A p.M349K 50        46,XY[20] 
64 AML c.1105C>G p.R369G 48 c.1574G>A p.R525H    46,XX[20] 
65 AML c.1399G>T p.D467Y 45 c.1589G>A p.G530D 13 ASXL1 c.1934dup, p.G646fs 13 NI 
          ASXL1 c.1900_1922del, p.E635fs  
          EZH2 c.2022G>C, p.L674F  
          SETBP1 c.2608G>A, p.G870S  
          EZH2 c.2197T>A, p.Y733N 10  
          SETBP1 c.2612T>C, p.I871T  
66 AML c.1574G>A p.R525H 54        NI 
67 MDS c.3G>A p.M1I 45 c.1574G>A p.R525H DNMT3A c.1010C>G, p.S337* NI 
68 MDS c.3G>A p.M1I 49 c.1574G>A p.R525H    46,XY[20] 
69 MDS c.3G>A p.M1I 43 c.1574G>A p.R525H    46,XX[20] 
70 MDS c.3G>A p.M1I 53 c.1574G>A p.R525H    46,XY[20] 
71 MDS c.3G>A p.M1I 50 c.694A>G p.T232A    46,XY[20] 
72 MDS c.3G>A p.M1I 49 c.962C>T p.P321L 14 DNMT3A c.1792C>T, p.598* 14 46,XY[20] 
73 MDS c.3G>A p.M1I 49 c.962C>T p.P321L 14    46,XY[20] 
74 MDS c.3G>A p.M1I 48 c.1037C>T p.A346P    46,XY[20] 
75 MDS c.3G>A p.M1I 46 c.1643T>A p.L548H    46,XX[20] 
76 MDS; MM; MBL c.3G>A p.M1I 50     DNMT3A c.2645G>A, p.R882H 15 46,XX[20] 
77 MDS c.3G>A p.M1I 46     PTPN11 c.215C>T, p.A72V 42 47,XY,del(5)(q13q33), +21[2]/48,sl,t(9;21) (q10;q10), +21[12]/ 
          RUNX1 c.1036dup, p.R346fs 32  
78 MDS c.3G>A p.M1I 49     JAK2 c.1849G>T, p.V617F 46,XY[20] 
79 MDS c.3G>A p.M1I 49        45,X,-Y[6]/46,XY[14] 
80 MDS c.415_418dup p.D140fs 44 c.1574G>A p.R525H 10 ASXL1 c.4127dup, p.P1377fs 12 NI 
81 MDS c.415_418dup p.D140fs 45 c.794C>T p.P265L 27 DNMT3A c.1579C>T, p.Q527* 46,XY[20] 
82 MDS c.1496dup p.A500fs 47 c.1660G>A p.E554K    46,XY[20] 
83 MDS c.130C>T p.Q44* 60 c.1126C>T p.A376T DNMT3A c.2207G>A, p.R736H 46,XX[20] 
84 MDS c.475C>T p.R159* 47 c.1589G>A p.G530D    NI 
      c.1574G>A p.R525H     
      c.1588G>A p.G530S     
85 MDS c.931C>T p.R311* 51 c.1574G>A p.R525H SRSF2 c.284C>T, p.P95L NI 
86 MDS c.931C>T p.R311* 50 c.1574G>A p.R525H    NI 
87 MDS c.992_994del p.K331del 43 c.1574G>A p.R525H 14 TET2 c.3866G>T, p.C1289F 46,XY[20] 
88 MDS c.992_994del p.K331del 48        46,XY[20] 
89 MDS c.566C>T p.P189L 49 c.1574G>A p.R525H EZH2 c.434T>C, p.F145S NI 
90 MDS c.710T>G p.L237W 49 c.1589G>A p.G530D 13    46,XY[20] 
91 MDS c.1016G>A p.R339H 51     IDH1 c.605del, p.S202fs 31 45,X,-Y/46,XY[15] 
92 MDS c.1015C>T p.R339C 49 c.680C>T p.T227M 13 TET2 c.1793del, p.N598fs 46,XY[20] 
93 MDS c.1018T>A p.Y340N 47 c.1574G>A p.R525H CUX1, c.2389del, p.Q797fs 13 46,XY[20] 
          EZH2 c.371A>G, p.D124G 15  
94* MDS c.1105C>G p.R369G 47 c.645-1G>A p.? TET2 c.1263del; p.G422fs 31 NI 
          TET2 c.3860_3869del, p.F1287fs  
95 Pancytopenia c.3G>A p.M1I 47 c.1574G>A p.R525H 14 JAK2 c.1849G>T, p.V617F 15 NI 
          TET2 c.1648C>T, p.R550*  
96 Pancytopenia c.3G>A p.M1I 47 c.1574G>A p.R525H    NI 
97 Pancytopenia c.415_418dup p.D140fs 46 c.1574G>A p.R525H    46,XY, del(20)(q11.2q13.1) [1]/46,XY[20] 
98 Pancytopenia c.430del p.T144fs 45 c.1574G>A p.R525H ASXL1c.4002del, p.S1335fs 21 NI 
          TP53 c.586C>T, p.R196*  
          TP53 c.916C>T, p.R306*  
          IDH2 c.419G>A, p.R140Q  
99 Pancytopenia c.946_947del p.M316fs 47 c.1574G>A p.R525H ASXL1 c.2644C>T, p.Q882* 46,XY[20] 
          PHF6 c.941T>C, p.I314T 11  
100 Pancytopenia c.1354del p.L452fs 48 c.1574G>A p.R525H DNMT3A c.929T>C, p.I310T 46,XY[20] 
101 Pancytopenia c.475C>T p.R159* 48 c.1574G>A p.R525H 12 SRSF2 c.284C>A, p.P95H 10 NI 
          STAG2 c.1243C>T, p.H415Y 16  
102 Pancytopenia c.1628C>G p.S543* 50 c.1574G>A p.R525H ASXL1 c.1934dup, p.G646fs NI 
          RUNX1 c.540del, p.F180fs  
          PHF6 c.941T>C, p.I314T  
          KDM6A c.2665del, p.T889fs  
103 Pancytopenia c.649T>C p.S217P 48 c.1589G>A p.G530D ASXL1 c.2467_2468insA, p.L823fs NI 
          KRAS c.437C>T, p.A146V  
          SRSF2 c.47T>A, p.L16H  
104 Pancytopenia c.773C>T p.P258L 47 c.1574G>A p.R525H KDM6A c.3107delT, p.F1036fs NI 
          SRSF2 c.284C>A, p.P95H  
105 Pancytopenia c.776A>G p.Y259C 48 c.1574G>A p.R525H FBXW7 c.62G>A, p.G21D 19 46,XY[20] 
106 Pancytopenia c.1016G>T p.R339L 50 c.1574G>A p.R525H    NI 
107 Thrombocytopenia c.415_418dup p.D140fs 45 c.1574G>A p.R525H 10 ASXL1 c.1900_1922del, p.E635fs NI 
          CUX1 c.2161C>T, p.Q721*  
          SMC1A c.2132G>A, p.R711Q  
108 Thrombocytopenia c.1586_ 1587delCA p.T529fs 52     TP53 c.1024C>T, p.R342* 40 46,XX[20] 
109 Thrombocytopenia c.3G>A p.M1I 45 c.962C>T p.P321L 23 RUNX1 c.281G>A, p.S94N 30 NI 
          TP53 c.742C>T, p.R248W 35  
          SRSF2 c.284C>G, p.P95R 26  
110 Neutropenia c.3G>A p.M1I 48 c.1574G>A p.R525H 10    NI 
111 Neutropenia c.3G>A p.M1I 47 c.1574G>A p.R525H    NI 
112 Anemia c.1105C>T p.R369* 45 c.1574G>A p.R525H ASXL1 c.1934dup, p.G646fs 46,XX,+1, der(1;7)(q10;p10) [16]/46,XX[4] 
          EZH2 c.786dup, p.N263fs  
          SETBP1 c.2613_2614delinsGC, p.I871_G872delinsMR  
113 MPN c.415_418dup p.D140fs 49        46,XX[20] 
114 MPN c.946_947del p.M316fs 48        NI 
115 MPN c.916C>T p.Q306* 48        46,XX[20] 
116 MPN c.1141A>T p.K381* 44 c.1574G>A p.R525H CUX1 c.988C>T, p.Q330* 46,XY[20] 
117 AML c.6G>T p.E2D 48     FLT3 c.1805_1806ins42, p.K602_W603ins14 n/a 46,XX[20] 
          NPM1 c.863_864insCCTG, p.W288fs 35  
          WT1 c.1141_1144dup, p.A382fs  
118* AML c.55G>A p.G19R 48     FLT3 ITD c.1837 +  11_1837 + 12ins114, p.? n/a NI 
          NPM1 c.863_864insCCTG, p.W288fs 43  
          IDH1 c.395G>A, p.R132H 41  
          DNMT3A c.1627G>T, p.G543C 42  
119* AML c.97T>C p.Y33H 45     FLT3 c.1770_1811dup42, p.W603_E604ins14 n/a NI 
          NPM1 c.860_863dup, p.W288fs 18  
          DNMT3A c.860_863dup, p.W288fs 27  
          TET2 c.2490dup, p.Q831fs 23  
120 AML c.465G>A p.M155I 47     NPM1 c.860_863dup, p.W288fs 46,XY[20] 
          SRSF2 c.284C>G, p.P95R 28  
          TET2 c.2244dup, p.Q749fs 44  
121 AML c.465G>A p.M155I 47     NPM1 c.863_864insCTTG, p.W288Cfs 33 46,XY[20] 
          GATA2 c.599dup, p.S201*  
122* AML c.491G>A p.R164N 48 c.1774A>T p.I592F 35 NPM1 c.863_864insCTTG, p.W288Cfs 33 46,XX[20] 
123 AML c.1528C>T p.P510S 48     NPM1 c.860_863dup, p.W288fs 34 46,XY[20] 
          SRSF2 c.284C>T, p.P95L 42  
          KRAS c.35G>A, p.G12D 11  
124 AML c.380T>A p.M127K 49     FLT3 c.2505T>G, p.D835E 46,XY,+12, der(17)t(17;18) (p10;q10),-18[8] 
          TP53 c.400T>A, p.F134I 46  
          TP53 c.458_462del, p.P153fs  
          U2AF1 c.101C>A, p.S34Y  
          KRAS c.351A>T, p.K117N 27  
125 AML c.465G>A p.M155I 47     FLT3 p.N841K 46,XY[20] 
          KRAS c.35G>T, p.G12V  
126 AML c.199G>C p.G67R 50     ASXL1 c.2959G>T, p.G987* 47 46,XY[20] 
          CEBPA c.985_986insCC, E329fs 42  
          CEBPA c.68del, p.P23fs 46  
          IDH2 c.418C>T, p.R140W 48  
          JAK2 c.1849G>T, p.V617F  
127 AML c.199G>C p.G67R 48     ASXL1 c.2959G>T, p.G987* 22 46,XY[20] 
          IDH2 c.418C>T, p.R140W 25  
          SRSF2 c.284C>A, p.P95H 28  
          STAG2 c.1196 + 1G>A, p.?  
          STAG2 c.1999del, p.R667fs 15  
128* AML c.465G>A p.M155I 51        48,XY,+8,+22[20] 
129 AML c.883G>A p.A295T 53     TP53 c.743G>A, p.R248Q 35 44,XY,-3,add(5) (q11.2),+8, add(8)(q22), der(12;17)(q10;q10), 
          TP53 c.818G>A, p.R273H 15 −14,i(14)(q10), i(21)(q10)[12]/ 43-45, sl,-add(5)(q11.2), i(5)(q10)[cp4]/88 < 4n>,slx2[1] 
130 AML c.893T>C p.I298T 49     DNMT3A c.989G>A, p.W330* NI 
          TP53 c.844C>T, p.R282W 61  
          TP53 c.535C>T, p.H179Y  
          PTPN11 c.1504T>C, p.S502P  
131 AML c.1063G>A p.E355K 47     PHF6 c.418 + 2T>C, p.? 21 46,XX[7] 
          KMT2A c.10462C>T, p.Gln3488* 25  
132 AML c.465G>A p.M155I 48     NRAS c.181C>A, p.Q61K 15 46,XY,inv(16) (p13.1q22)[20] 
133 AML c.465G>A p.M155I 47     CSF3R c.1843A>G, p.T615A
CSF3R c.1853C>T, p.T618I 
22
1
46,XX, der(8)t(8;21) (q22;q22), der(8)?(8pter-> 8p22::?:: 8p11.2-> 8q?13::8q22 ->8qter), der(21)(21pter-> 21q22::8?q13-> 8q?22:: 8q22-> 8qter)[7]/45, sl,-X[8]/46,XX[5] 
134 AML c.138 + 5G>A p.? 50     NRAS c.181C>A, p.Q61Lys 39 47,XY, +8,inv(16) (p13.1q22)[20] 
135 MDS c.367G>A p.G123S 48     ASXL1 c.2239_2244delinsCC, p.S747fs 42 46,XX[20] 
          ASXL1 c.1934dup, p.G646fs  
          TET2 c.5543C>G, p.S1848*  
          EZH2 c.1119dup, p.T374fs  
          IDH2 c.419G>A, p.R140Q 31  
          SF3B1 c.2347G>A, p.E783K  
          JAK2 c.1849G>T, p.V617F  
136 MDS c.465G>A p.M155I 43     JAK2 c.1849G>T, p.V617F 27 NI 
          DNMT1 c.4663G>A, p.V1555M 32  
          SH2B3 c.127C>T, p.R43C 35  
137 MDS c.644 + 5G>C p.? 43     SH2B3 c.947_953del, p.E316fs 21 47,XY, +9,del(20) (q11.2q13.1)[19]/46,XY[1] 
          JAK2 c.1849G>T, p.V617F 40  
138 MDS c.523G>A p.G175S 48     NRAS c.34G>A, p.G12S 44 NI 
          TET2 c.2290dup, p.Q764fs 50  
          GATA2 c.599del, p.G200fs  
          SRSF2 c.284C>A, p.P95H 47  
139 MDS c.529C>T p.P177S 45     SMC1A c.197A>G, p.H66R NI 
          BCOR c.441dup, p.Ile148fs 50  
          U2AF1 c.101C>T, p.S34F 37  
          RUNX1 c.601del, p.R201fs 10  
140 MDS c.1301C>T p.P434L 49     GATA2 c.599dup; p.S201* 31 46,XY[20] 
          NPM1 c.867_868insAGGA, p.W290fs 48  
141 MDS c.1528C>T p.P510S 48     ASXL1 c.1934dup, p.G646fs 35 NI 
          CBL c.800G>A, p.G267D  
142 MDS c.1704C>G p.C568W 48     KIT c.2446_2447delinsAT, p.D816I 10 NI 
          KIT c.2447A>T, p.D816V  
          PTPN11 c.154A>G, p.T52A  
          PTPN11 c.1508G>A, p.G503E  
143 MDS/MPN c.1760G>C p.G587A 47     CSF3R c.1853C>T, p.T618I 47,XY,+8[20] 
          KRAS c.436G>C, p.A146P 37  
          ASXL1 c.1900_1922del, p.E635fs 44  
          STAG2 c.1191dup, p.Q399fs 92  
144 MDS c.1276G>A p.E426K 49     SRSF2 c.284C>A, p.P95H 46 NI 
          IDH2 c.419G>A, p.R140Q 45  
145 MDS c.1528C>T p.P510S 48     TP53 c.734G>A, p.G45D 20 NI 
146 MDS c.1663G>A p.A555T 43     TP53 c.706dup, p.Y236fs 39 44-47,XY, del(5)(q22q35), -7,der(11)t(11;13) (p15;q14), 
          TP53 c.713G>A, p.C238Y 37  
147 Pancytopenia c.27G>A p.K9K 43        NI 
148 Pancytopenia c.465G>A p.M155I 50     SF3B1 c.1996A>G, p.K666E 19 45,X,-Y[14]/46,XY[6] 
          U2AF1 c.101C>T, p.S34F  
149 Pancytopenia c.556A>T p.M186L 47     ETNK1 c.731A>G, p.N244S 24 NI 
 Small cell carcinoma         KRAS c.468C>G, p.F156L 18  
150 Pancytopenia c.656G>A p.R219H 49 c.679A>G p.T227A 30    46,XY[20] 
151 Pancytopenia c.845G>A p.R282H 40     TP53 c.377A>G, p.Y126C 67 NI 
          BRAF c.1391G>T, p.G464V 38  
152 Pancytopenia c.881G>T p.C294F 48     CBL c.1211G>A, p.C404Y NI 
153 Pancytopenia c.1477T>G p.S493A 47     ASXL1 c.1900_1922del, p.E635fs 15 NI 
          ASXL1 c.1934dup, p.G646fs  
          ASXL1 c.2295del, p.S766fs  
          SH2B3 c.703C>G, p.R235G 16  
154 Thrombocytopenia c.465G>A p.M155I 50        46,XY[20] 
155 Thrombocytopenia c.707C>T p.T236M 47        NI 
156 Thrombocytopenia c.138 + 5G>A p.? 54        NI 
157 Thrombocytopenia c.644 + 5G>C p.? 47     RAD21 c.507_508del, p.E169fs 38 NI 
          NRAS c.35G>A, p.G12D 20  
          TP53 c.818G>A, p.R273H 31  
          TP53 c.559 + 1G>A, p.? 42  
158 Neutropenia c.138 + 5G>A p.? 50        NI 
159 Anemia c.751C>T p.P251S 46        46,XX[20] 
160 Anemia c.1748C>T p.A583V 47     PTPN11 c.227A>T, p.E76V 45 NI 
161 MPN, PV c.23G>A p.R8Q 47     JAK2 c.1849G>T, p.V617F 45 46,XY[20] 
162 MPN, PV c.94G>A p.D32N 48     JAK2 c.1849G>T, p.V617F 85 46,XY[20] 
163 MPN, ET c.398C>T p.A133V 44     CALR c.1122_1125del, p.K374fs 44 NI 
          U2AF1 c.470A>G, p.Q157R 45  
          ZRSR2 c.236_237del, p.E79Afs 87  
164 MPN c.644T>C p.I215T 48     JAK2 c.1849G>T, p.V617F 26 NI 
          ASXL1 c.1934dup, p.G646fs  
165 MPN c.647T>C p.L216P 48 c.1655T>G p.L552R 14 JAK2 c.1849G>T, p.V617F 12 NI 
          ASXL1 c.1900_1922del, p.E635fs  
166 MPN, ET c.707C>T p.T236M 50     JAK2 c.1849G>T, p.V617F 18 46,XY[20] 
          SF3B1 c.2110A>T, p.I704F 15  
167 MPN c.1471G>A p.V491I 52     JAK2 c.1849G>T, p.V617F 47 46,XY[20] 
          TP53 c.743G>A, p.R248Q  
          TP53 c.742C>T, p.R248W  
          NF1 c.2035del, p.I679fs 15  
168 MPN, ET c.1630G>T p.V544L 49     JAK2 c.1849G>T, p.V617F 26 46,XY[20] 
          SF3B1 c.1997A>C, p.K666T 16  
169 MPN, ET c.138 + 5G>T p.? 49        NI 
170 MPN, ET c.465G>A p.M155T 49        46,XX[20] 
171 MPN c.560A>G p.K187R 46        NI 
172 LPL with pancytopenia c.490C>T p.R164W 50     SF3B1 c.2098A>G, p.K700E 41 46,XY[20] 
173 γ heavy chain disease c.490C>T p.R164W 49        46,XY[20] 
 MYD88 negative LPL             
174 CLL; breast cancer c.490C>T p.R164W 47        46,XY[20] 
175 CLL c.751C>T p.P251S 50        46,XY, del(13)(q12;q22), add(18)(p11.20[4]/46,XY[16] 
176 MM c.29G>A p.R10Q 46     TP53 c.376T>G, p.Y126D 24 44∼46,X, add(X)(p10), del(6)(q21q23), i(8)(q10), 
          DNMT3A c.2339T>C, p.I780T 18 t(11;14)(q13;q32), del(13)(q12q22),- 14,-17,+1∼ 2mar[cp4]/46,XX[16] 
          KDM6A c.1354_1355del, p.G452fs 26  
177 AML     c.1574G>A p.R525H 12 ASXL1 c.1774C>T, p.Q592* 46,XY,t(1;4)? (q21;q31)[2]/46,XY[6] 
          PHF6 c.58del, p.C20fs 17  
178 AML     c.1574G>A p.R525H 25 ASXL1 c.2077C>T, p.R693* 46,XY[21] 
179 AML     c.1574G>A p.R525H CBL c.1211G>A, p.C404Y 15 46,XX[20] 
          U2AF2 c.766G>A, p.D256G 16  
180 AML     c.1574G>A p.R525H SH2B3 c.519_523del, p.R175fs 45,X,-Y[5]/46,XY[15] 
          PHF6 c.635G>T, p.C212F  
181 AML     c.1574G>A p.R525H 16 SRSF2 c.284C>A, p.P95H 17 46,X,del(X)?(q22q26)[2]/46,XX[18] 
182 AML     c.1574G>A p.R525H SETBP1 c.2602G>C, p.D868H NI 
      c.944A>G p.H315R CUX1 c.439C>T, p.R147*  
          STAG2 1693G>T, p.E565*  
          EZH2 c.1967C>T, p.A656V  
          ASXL1 c.2156del, p.E719fs  
183 AML     c.1589G>A p.G530D 15 ASXL1 c.2985del, p.H995fs 46,XY[20] 
      c.629A>G p.Q210R 15 ASXL1 c.2083C>T, p.R695*  
          ASXL1 c.2077C>T, p.H963*  
          EZH2 c.2213del, p.A738fs 15  
          NF1 c.3774G>C, p.W1258C 12  
184 AML; DLBCL     c.1589G>A p.G530D    46,XY[20] 
185 MDS     c.1574G>A p.R525H DNMT3A c.2645G>A, p.R882H 46,XX[11] 
186 MDS     c.1574G>A p.R525H    45,X,-Y[4]/46,XY[16] 
187 MDS     c.1574G>A p.R525H 10    46,XX[20] 
188 MDS     c.1574G>A p.R525H    46,XY[20] 
189 MDS     c.1574G>A p.R525H    46,XY[20] 
190 AML     c.157C>G p.R53G SF3B1 c.2098A>G, p.K700E 32 NI 
          PTPN11 c.214G>A, p.A72T 37  
191 AML     c.1760_ 1761TT p.G587V DNMT3A c.2645G>A, p.R882H 46,XY[20] 
          DNMT3A c.2095G>A, p.G699R  
192 MDS     c.622C>G p.Q208E 14 SETBP1 c.2608G>A, p.G870S 46,XY,del(7)(q22)[6]/46,XY[14] 
          SETBP1 c.2602G>A, p.D868N  
          DNMT3A c.2645G>A, p.R882H12 12  
          EVT6 c.313C>G, p.R105G  
          TET2 c.4079T>C, p.L1360P  
193 MDS     c.1199G>T p.R400L ASXL1 c.2324T>G, p.L775* 20 46,XY, del(5)(q31q33) [13]/46,XX[7] 
194 MDS     c.1369G>C p.V457L TP53 c.818G>A, p.R273H 30 46,XY, del(5)(q31q33) [14]/46,XX[6] 
          TP53 c.578A>C, p.H193P  
195 Neutropenia     c.1775T>A p.I592N SRSF2 c.284C>T, p.P95L NI 
          RUNX1 c.606dup, p.P203fs  
          TET2 c.330G>C, p.Lys110N  
196* Normal c.3G>A p.M1I 53        46,XY[20] 
197* Normal c.3G>A p.M1I 50        46,XX[20] 
198* Normal c.415_418dup p.D140fs 46        Not done 
199* Normal c.415_418dup p.D140fs 45        NI 
200* Normal c.415_418dup p.D140fs 56        46,XY[20] 
201* Normal c.992_994del p.K331del 47        Not done 
202 Normal∼(donor) c.931C>T p.311* 50        47,XX,+8[19] 
203 Normal∼(donor) c.465G>A p.M155I 46        46,XY[20] 
204 Normal∼(donor) c.1693G>A p.V565M 50        46,XY[20] 
205 Normal∼(donor) c.1585dup p.T529fs 46        44,XY,inc[1]//46,XX[16] 

AF, variant allele frequency by %; ET, essential thrombocythemia; gl, germline; NI, no information; PMF, primary myelofibrosis; s, somatic; Tier 1, CV; Tier 2, VUS.

*

Germline variants confirmed by skin biopsies.

Patients reported in a prior study.9 

Table 2.

The demographic features, family history, and overall survival of 205 individuals with DDX41 variants

PatientDiagnosisAgeSexEthnicitygl DDX41FU (d)Survival (Y/N)FH_MNFH_LNFH_Other
1* AML 62 NI p.M1I NI NI NI NI NI 
2 AML 78 Caucasian p.M1I 365 No No No 
AML 77 Caucasian p.M1I 122 NI NI NI 
4 AML 64 Caucasian p.M1I 519 No No Breast cancer (mother) 
AML 80 Caucasian p.M1I 336 NI NI NI 
6*, AML 77 Caucasian p.M1I 2161 No No No 
AML 62 Caucasian p.M1I 151 Leukemia (father) No No 
AML 76 Caucasian p.M1I 1214 No No No 
9 AML 68 Caucasian p.M1I 822 No No No 
10*, AML 76 Caucasian p.M1I 2161 No No Breast cancer (mother and sister); 
          pituitary tumor (brother); rhabdomyosarcoma (son) 
11 AML 88 Caucasian p.M1I 98 No No No 
12 AML 48 Caucasian p.M1I 700 No No No 
13 AML 63 Caucasian p.M1I NI NI NI NI NI 
14 AML 78 Caucasian p.M1I 1034 No No No 
15 AML 65 Caucasian p.M1I NI NI NI NI NI 
16 AML 73 Caucasian p.M1I 91 No No Cancer of unknown origin (mother) 
17 AML 72 Caucasian p.M1I 822 No No No 
18 AML 74 Caucasian p.M1I 396 No No Cancer of unknown origin (brother) 
19* AML 75 Caucasian p.M1I 608 NI NI NI 
20*AML 60 Caucasian p.M1I 639 No No No 
21# AML 65 Caucasian p.M1I 365 No No Cancer of unknown origin (sister) 
22# AML 64 Caucasian p.M1I 304 No No Lung cancer (father); cervical cancer (daughter) 
23 AML 68 Caucasian p.M1I 400 No No Lung cancer (mother) 
24 AML 69 Caucasian p.M1I 1216 NI NI NI 
25 AML 71 Caucasian p.K108fs NI NI NI NI NI 
26 AML 71 Caucasian p.D140fs NI NI NI NI NI 
27 AML 57 Caucasian p.D140fs 561 NI NI NI 
28 AML 57 Caucasian p.D140fs 403 No No No 
29 AML 57 Caucasian p.D140fs 1080 No Lymphoma (father) Prostatic cancer (paternal uncle) 
30*,† AML 59 Caucasian p.D140fs 639 No No Pancreatic cancer (brother) 
31 AML 78 Caucasian p.D140fs NI NI NI NI NI 
32 AML 81 Caucasian p.D140fs 260 NI NI NI 
33 AML 63 Caucasian p.D140fs 61 NI NI NI 
34 AML 90 Caucasian p.D140fs 176 No No No 
35 AML 66 Caucasian p.D140fs 913 MDS (father and paternal uncle) No No 
36 AML 67 NI p.D140fs 580 NI NI NI 
37 AML 50 Caucasian p.D140fs 245 NI NI NI 
38 AML 70 AA p.D140fs 183 No No Brain cancer (sister) 
39 AML 53 Caucasian p.D140fs 945 No No Lung cancer (mother); colon cancer (father) 
40 AML 70 Caucasian p.D140fs 488 No No Cancer of mouth and throat (brother) 
41 AML 57 NI p.D140fs 675 NI NI NI 
42 AML 54 Caucasian p.D140fs 300 No No No 
43 AML 61 Caucasian p.D140fs 145 No MM (father) No 
44 AML 73 Asian p.I224fs 731 NI NI NI 
45 AML 54 Caucasian p.L283fs 580 No No No 
46 AML 58 Caucasian p.M316fs 1071 No No No 
47 AML 76 NI p.G465fs 640 NI NI NI 
48 AML 63 Caucasian p.Q41* 212 No No No 
49 AML 70 Caucasian p.Q41* NI NI NI NI NI 
50 AML 71 Caucasian p.R159* 31 NI NI No 
51 AML 61 Caucasian p.R311* NI NI NI NI NI 
52 AML 68 Caucasian p.R369* 548 No No No 
53 AML 78 NI p.R369* 120 NI NI NI 
54 AML 70 Caucasian p.Q370* 408 Leukemia (mother) No No 
55 AML 82 Caucasian p.Q502* NI NI NI NI NI 
56 AML 68 Caucasian p.? 905 Leukemia (maternal aunt) No No 
57 AML 74 Caucasian p.K331del 232 No No Thyroid and colon cancer (mother) 
58 AML 65 Caucasian p.L216V 275 MDS (brother) No No 
59 AML 66 Caucasian p.G218D 31 NI NI NI 
60 AML; breast cancer 47 Caucasian p.P258L 653 No No No 
61 AML 60 NI p.R323C 956 NI NI NI 
62 AML 69 Caucasian p.M349K 365 NI NI NI 
63 AML 69 Caucasian p.M349K 1134 No No Prostatic cancer (father) 
64 AML 81 Caucasian p.R369G 151 AML (paternal cousin) No No 
65 AML 85 Asian p.D467Y 458 NI NI NI 
66 AML 61 Asian p.R525H 243 MDS (father); Leukemia (paternal grandma) No No 
        Hematologic cancer (paternal uncle)   
67 MDS 72 Caucasian p.M1I NI NI NI NI NI 
68 MDS 73 Caucasian p.M1I 539 No No No 
69 MDS 81 Caucasian p.M1I 670 No No No 
70 MDS 76 Caucasian p.M1I 362 No No No 
71 MDS 79 Caucasian p.M1I 763 No No Prostatic cancer (brother) 
72 MDS 61 Caucasian p.M1I 192 No No Breast cancer (sister) 
73 MDS 60 Caucasian p.M1I 1795 No No Throat cancer (father); melanoma (sister) 
74 MDS 65 Caucasian p.M1I 153 NI NI No 
75 MDS 63 NI p.M1I NI NI NI NI NI 
76 MDS; MM; MBL 67 Caucasian p.M1I 98 No No No 
77 MDS 69 Caucasian p.M1I 92 No No No 
78 MDS 72 Caucasian p.M1I 2722 No No No 
79 MDS 60 Caucasian p.M1I 395 NI NI No 
80 MDS 88 Caucasian p.D140fs 476 NI NI NI 
81 MDS 69 Caucasian p.D140fs 1078 NI NI NI 
82 MDS 63 Asian p.A500fs 761 NI NI No 
83 MDS 76 Asian p.Q44* 701 No No No 
84 MDS 77 Caucasian p.R159* 876 NI NI NI 
85 MDS 85 Caucasian p.R311* NI NI NI NI NI 
86 MDS 84 Caucasian p.R311* NI NI NI NI NI 
87 MDS 77 Caucasian p.K331del 1793 Leukemia (father) No No 
88 MDS 62 Caucasian p.K331del 900 No No Prostatic cancer, melanoma and stomach cancer (paternal uncles); 
          Pancreatic cancer (maternal aunt); lung cancer (maternal cousins); 
          Bile duct cancer (maternal cousin); breast cancer (maternal great aunt) 
89 MDS 84 Caucasian p.P189L 2015 No No No 
90 MDS 73 Caucasian p.L237W 134 MDS (father) No No 
91 MDS 74 Caucasian p.R339H 2023 No No No 
92 MDS 76 Caucasian p.R339C 305 NI NI NI 
93 MDS 63 Caucasian p.Y340N 90 NI NI NI 
94* MDS 76 Caucasian p.R369G 864 NI NI NI 
95 Pancytopenia 85 NI p.M1I NI NI NI NI NI 
96 Pancytopenia 56 NI p.M1I NI NI NI NI NI 
97 Pancytopenia 82 Caucasian p.D140fs NI NI NI NI NI 
98 Pancytopenia 80 Caucasian p.T144fs NI NI NI NI NI 
99 Pancytopenia 79 NI p.M316fs NI NI NI NI NI 
100 Pancytopenia 83 Caucasian p.L452fs NI NI NI NI NI 
101 Pancytopenia 65 Caucasian p.R159* 61 NI NI NI 
102 Pancytopenia 56 NI p.S543* NI NI NI NI NI 
103 Pancytopenia 55 NI p.S217P NI NI NI NI NI 
104 Pancytopenia 67 NI p.P258L NI NI NI NI NI 
105 Pancytopenia 77 Asian p.Y259C NI NI NI NI NI 
106 Pancytopenia 58 Asian p.R339L NI NI NI NI NI 
107 Thrombocytopenia 81 NI p.D140fs NI NI NI NI NI 
108 Thrombocytopenia 37 Caucasian p.T529fs 423 AML (father) No No 
109 Thrombocytopenia 68 Caucasian p.M1I NI NI NI NI NI 
110 Neutropenia 64 NI p.M1I NI NI NI NI NI 
111 Neutropenia 78 Caucasian p.M1I NI NI NI NI NI 
112 Anemia 70 NI p.R369* NI NI NI NI NI 
113 MPN 40 Caucasian p.D140fs 278 Leukemia (family members, not specified) No Breast and uterine cancers (mother) 
114 MPN 76 Caucasian p.M316fs NI NI NI NI NI 
115 MPN, ET 41 NI p.Q306* NI NI NI NI NI 
116 MPN 85 NI p.K381* NI NI NI NI NI 
117 AML 48 Caucasian p.E2D 96 NI NI NI NI 
118* AML 54 NI p.G19R 61 NI NI NI 
119* AML 62 NI p.Y33H 516 NI NI NI 
120 AML 76 Caucasian p.M155I NI NI NI NI NI 
121 AML 56 NI p.M155I 613 No No No 
122* AML 63 Caucasian p.R164N 365 No No No 
123 AML 84 Caucasian p.P510S 216 NI NI NI 
124 AML 81 Caucasian p.M127K 15 No No No 
125 AML 47 Caucasian p.M155I NI NI NI NI NI 
126 AML 72 Caucasian p.G67R 180 No No No 
127 AML 72 Caucasian p.G67R 150 No No No 
128* AML 46 Caucasian p.M155I 146 No No Cancer of unknown origin (mother) 
129 AML 79 Caucasian p.A295T 241 No No Cancer of unknown origin (mother and father) 
130 AML 55 NI p.I298T NI NI NI NI NI 
131 AML 47 Caucasian p.E355K 19 No No No 
132 AML 67 Caucasian p.M155I 1056 No No No 
133 AML NI p.M155I NI NI NI NI NI 
134 AML 64 NI p.? 28 NI NI NI 
135 MDS 79 Caucasian p.G123S NI NI NI NI NI 
136 MDS 63 NI p.M155I NI NI NI NI NI 
137 MDS 73 Caucasian p.? 420 NI NI NI 
138 MDS 50 Caucasian p.G175S NI NI NI NI NI 
139 MDS 84 Caucasian p.P177S NI NI NI NI NI 
140 MDS 60 Caucasian p.P434L 303 NI NI NI 
141 MDS 83 Caucasian p.P510S NI NI NI NI NI 
142 MDS 78 Caucasian p.C568W 516 No No No 
143 MDS/MPN 56 Caucasian p.G587A 183 NI NI No 
144 MDS 92 Caucasian p.E426K NI NI NI NI NI 
145 MDS 65 NI p.P510S 456 NI NI NI 
146 MDS 62 Caucasian p.A555T 255 NI NI NI 
147 Pancytopenia 63 NI p.K9K NI NI NI NI NI 
148 Pancytopenia 81 Caucasian p.M155I NI NI NI NI NI 
149 Pancytopenia; SCC 77 NI p.M186L NI NI NI NI NI 
150 Pancytopenia 85 NI p.R219H NI NI NI NI NI 
151 Pancytopenia 84 NI p.R282H NI NI NI NI NI 
152 Pancytopenia 85 NI p.C294F 550 NI NI NI 
153 Pancytopenia 70 NI p.S493A NI NI NI NI NI 
154 Thrombocytopenia 88 Caucasian p.M155I 37 No No No 
155 Thrombocytopenia 78 NI p.T236M NI NI NI NI NI 
156 Thrombocytopenia 39 Caucasian p.? NI NI NI NI NI 
157 Thrombocytopenia 73 Caucasian p.? 31 NI NI NI 
158 Neutropenia 43 Caucasian p.? NI NI NI NI NI 
159 Anemia 69 Caucasian p.P251S 1777 No No No 
160 Anemia 78 Caucasian p.A583V NI NI NI NI NI 
161 MPN, PV 53 Caucasian p.R8Q 87 No No Cancer of unknown origin (brother) 
162 MPN, PV 61 Caucasian p.D32N 395 NI NI NI 
163 MPN, ET 72 NI p.A133V NI NI NI NI NI 
164 MPN 49 NI p.I215T 943 NI NI NI 
165 MPN 85 NI p.L216P NI NI NI NI NI 
166 MPN, ET 69 Caucasian p.T236M 918 No No No 
167 MPN 66 Caucasian p.V491I 3839 No No No 
168 MPN, ET 54 Caucasian p.V544L 664 NI NI NI 
169 MPN, ET 39 NI p.? NI NI NI NI NI 
170 MPN, ET Asian p.M155T NI NI NI NI NI 
171 MPN 46 Caucasian p.K187R NI NI NI NI NI 
172 Pancytopenia; LPL 77 AA p.R164W 10 No No No 
173 Y heavy chain disease; 52 NI p.R164W 7955 Myelofibrosis (mother) No Lung cancer (father) 
 MYD88 negative LPL          
174 CLL; breast cancer 51 NI p.R164W 1186 No FL (mother) Bladder & prostatic cancer (father) 
175 CLL 70 Caucasian p.P251S 1004 No No No 
176 MM 82 Caucasian p.R10Q 471 No No No 
177 AML 64 Asian  1703 Leukemia (maternal uncle)  Gastric cancer (paternal grandfather) 
178 AML 74 Caucasian  578 No No Sarcoma (father) 
179 AML 69 Caucasian  974 NI NI No 
180 AML 54 Caucasian  42282 No No Colon cancer (father) 
181 AML 70 Caucasian  455 No No Breast cancer (paternal aunt) 
182 AML 77 Caucasian  NI NI NI NI NI 
183 AML 70 Caucasian  81 No No No 
184 AML; DLBCL 74 Caucasian  NI No No Breast cancer (sisters × 2) 
185 MDS 75 Caucasian  1127 No No No 
186 MDS 71 Caucasian  2053 No No Cancer of unknown origin (mother and sister) 
187 MDS 65 Caucasian  2466 No No Lung cancer (father); breast cancer (father's sister) 
188 MDS 54 Caucasian  151 No No No 
189 MDS 69 Caucasian  689 No No Prostatic cancer (father) 
190 AML 30 NI  304 NI NI NI 
191 AML 63 Caucasian  21 No No No 
192 MDS 81 Caucasian  NI NI NI NI NI 
193 MDS 62 Caucasian  212 No No Yes 
194 MDS 80 Caucasian  NI NI NI NI NI 
195 Neutropenia 86 Caucasian  NI NI NI NI NI 
196* Normal 43 Caucasian p.M1I 65 MDS (father) No No 
197* Normal 69 Caucasian p.M1I 496 Myeloid neoplasm (mother) No No 
198* Normal 28 Caucasian p.D140fs 1044 AML (father) No No 
199* Normal 59 Caucasian p.D140fs NI Leukemia (father) NI NI 
200* Normal 66 Caucasian p.D140fs NI MDS (brother); AML (brothers); ALL (daughter) No Lung cancer (father) 
201* Normal 33  Caucasian p.K331del 614 MDS (father) No Prostatic cancer (paternal uncle); pancreatic cancer (maternal aunt); lung cancer (maternal cousins); bile duct cancer (maternal cousin); melanoma and stomach cancer (paternal uncle); breast cancer (maternal great aunt) 
202 Normal∼(donor) 71 Caucasian p.311* 367/PHSCT No No  
203 Normal∼(donor) 59 Caucasian p.M155I 2061/PHSCT No No No 
204 Normal∼(donor) 60 Caucasian p.V565M 725/PHSCT NI NI NI 
205 Normal∼(donor) 71 Caucasian p.T529fs 459/PHSCT No No No 
PatientDiagnosisAgeSexEthnicitygl DDX41FU (d)Survival (Y/N)FH_MNFH_LNFH_Other
1* AML 62 NI p.M1I NI NI NI NI NI 
2 AML 78 Caucasian p.M1I 365 No No No 
AML 77 Caucasian p.M1I 122 NI NI NI 
4 AML 64 Caucasian p.M1I 519 No No Breast cancer (mother) 
AML 80 Caucasian p.M1I 336 NI NI NI 
6*, AML 77 Caucasian p.M1I 2161 No No No 
AML 62 Caucasian p.M1I 151 Leukemia (father) No No 
AML 76 Caucasian p.M1I 1214 No No No 
9 AML 68 Caucasian p.M1I 822 No No No 
10*, AML 76 Caucasian p.M1I 2161 No No Breast cancer (mother and sister); 
          pituitary tumor (brother); rhabdomyosarcoma (son) 
11 AML 88 Caucasian p.M1I 98 No No No 
12 AML 48 Caucasian p.M1I 700 No No No 
13 AML 63 Caucasian p.M1I NI NI NI NI NI 
14 AML 78 Caucasian p.M1I 1034 No No No 
15 AML 65 Caucasian p.M1I NI NI NI NI NI 
16 AML 73 Caucasian p.M1I 91 No No Cancer of unknown origin (mother) 
17 AML 72 Caucasian p.M1I 822 No No No 
18 AML 74 Caucasian p.M1I 396 No No Cancer of unknown origin (brother) 
19* AML 75 Caucasian p.M1I 608 NI NI NI 
20*AML 60 Caucasian p.M1I 639 No No No 
21# AML 65 Caucasian p.M1I 365 No No Cancer of unknown origin (sister) 
22# AML 64 Caucasian p.M1I 304 No No Lung cancer (father); cervical cancer (daughter) 
23 AML 68 Caucasian p.M1I 400 No No Lung cancer (mother) 
24 AML 69 Caucasian p.M1I 1216 NI NI NI 
25 AML 71 Caucasian p.K108fs NI NI NI NI NI 
26 AML 71 Caucasian p.D140fs NI NI NI NI NI 
27 AML 57 Caucasian p.D140fs 561 NI NI NI 
28 AML 57 Caucasian p.D140fs 403 No No No 
29 AML 57 Caucasian p.D140fs 1080 No Lymphoma (father) Prostatic cancer (paternal uncle) 
30*,† AML 59 Caucasian p.D140fs 639 No No Pancreatic cancer (brother) 
31 AML 78 Caucasian p.D140fs NI NI NI NI NI 
32 AML 81 Caucasian p.D140fs 260 NI NI NI 
33 AML 63 Caucasian p.D140fs 61 NI NI NI 
34 AML 90 Caucasian p.D140fs 176 No No No 
35 AML 66 Caucasian p.D140fs 913 MDS (father and paternal uncle) No No 
36 AML 67 NI p.D140fs 580 NI NI NI 
37 AML 50 Caucasian p.D140fs 245 NI NI NI 
38 AML 70 AA p.D140fs 183 No No Brain cancer (sister) 
39 AML 53 Caucasian p.D140fs 945 No No Lung cancer (mother); colon cancer (father) 
40 AML 70 Caucasian p.D140fs 488 No No Cancer of mouth and throat (brother) 
41 AML 57 NI p.D140fs 675 NI NI NI 
42 AML 54 Caucasian p.D140fs 300 No No No 
43 AML 61 Caucasian p.D140fs 145 No MM (father) No 
44 AML 73 Asian p.I224fs 731 NI NI NI 
45 AML 54 Caucasian p.L283fs 580 No No No 
46 AML 58 Caucasian p.M316fs 1071 No No No 
47 AML 76 NI p.G465fs 640 NI NI NI 
48 AML 63 Caucasian p.Q41* 212 No No No 
49 AML 70 Caucasian p.Q41* NI NI NI NI NI 
50 AML 71 Caucasian p.R159* 31 NI NI No 
51 AML 61 Caucasian p.R311* NI NI NI NI NI 
52 AML 68 Caucasian p.R369* 548 No No No 
53 AML 78 NI p.R369* 120 NI NI NI 
54 AML 70 Caucasian p.Q370* 408 Leukemia (mother) No No 
55 AML 82 Caucasian p.Q502* NI NI NI NI NI 
56 AML 68 Caucasian p.? 905 Leukemia (maternal aunt) No No 
57 AML 74 Caucasian p.K331del 232 No No Thyroid and colon cancer (mother) 
58 AML 65 Caucasian p.L216V 275 MDS (brother) No No 
59 AML 66 Caucasian p.G218D 31 NI NI NI 
60 AML; breast cancer 47 Caucasian p.P258L 653 No No No 
61 AML 60 NI p.R323C 956 NI NI NI 
62 AML 69 Caucasian p.M349K 365 NI NI NI 
63 AML 69 Caucasian p.M349K 1134 No No Prostatic cancer (father) 
64 AML 81 Caucasian p.R369G 151 AML (paternal cousin) No No 
65 AML 85 Asian p.D467Y 458 NI NI NI 
66 AML 61 Asian p.R525H 243 MDS (father); Leukemia (paternal grandma) No No 
        Hematologic cancer (paternal uncle)   
67 MDS 72 Caucasian p.M1I NI NI NI NI NI 
68 MDS 73 Caucasian p.M1I 539 No No No 
69 MDS 81 Caucasian p.M1I 670 No No No 
70 MDS 76 Caucasian p.M1I 362 No No No 
71 MDS 79 Caucasian p.M1I 763 No No Prostatic cancer (brother) 
72 MDS 61 Caucasian p.M1I 192 No No Breast cancer (sister) 
73 MDS 60 Caucasian p.M1I 1795 No No Throat cancer (father); melanoma (sister) 
74 MDS 65 Caucasian p.M1I 153 NI NI No 
75 MDS 63 NI p.M1I NI NI NI NI NI 
76 MDS; MM; MBL 67 Caucasian p.M1I 98 No No No 
77 MDS 69 Caucasian p.M1I 92 No No No 
78 MDS 72 Caucasian p.M1I 2722 No No No 
79 MDS 60 Caucasian p.M1I 395 NI NI No 
80 MDS 88 Caucasian p.D140fs 476 NI NI NI 
81 MDS 69 Caucasian p.D140fs 1078 NI NI NI 
82 MDS 63 Asian p.A500fs 761 NI NI No 
83 MDS 76 Asian p.Q44* 701 No No No 
84 MDS 77 Caucasian p.R159* 876 NI NI NI 
85 MDS 85 Caucasian p.R311* NI NI NI NI NI 
86 MDS 84 Caucasian p.R311* NI NI NI NI NI 
87 MDS 77 Caucasian p.K331del 1793 Leukemia (father) No No 
88 MDS 62 Caucasian p.K331del 900 No No Prostatic cancer, melanoma and stomach cancer (paternal uncles); 
          Pancreatic cancer (maternal aunt); lung cancer (maternal cousins); 
          Bile duct cancer (maternal cousin); breast cancer (maternal great aunt) 
89 MDS 84 Caucasian p.P189L 2015 No No No 
90 MDS 73 Caucasian p.L237W 134 MDS (father) No No 
91 MDS 74 Caucasian p.R339H 2023 No No No 
92 MDS 76 Caucasian p.R339C 305 NI NI NI 
93 MDS 63 Caucasian p.Y340N 90 NI NI NI 
94* MDS 76 Caucasian p.R369G 864 NI NI NI 
95 Pancytopenia 85 NI p.M1I NI NI NI NI NI 
96 Pancytopenia 56 NI p.M1I NI NI NI NI NI 
97 Pancytopenia 82 Caucasian p.D140fs NI NI NI NI NI 
98 Pancytopenia 80 Caucasian p.T144fs NI NI NI NI NI 
99 Pancytopenia 79 NI p.M316fs NI NI NI NI NI 
100 Pancytopenia 83 Caucasian p.L452fs NI NI NI NI NI 
101 Pancytopenia 65 Caucasian p.R159* 61 NI NI NI 
102 Pancytopenia 56 NI p.S543* NI NI NI NI NI 
103 Pancytopenia 55 NI p.S217P NI NI NI NI NI 
104 Pancytopenia 67 NI p.P258L NI NI NI NI NI 
105 Pancytopenia 77 Asian p.Y259C NI NI NI NI NI 
106 Pancytopenia 58 Asian p.R339L NI NI NI NI NI 
107 Thrombocytopenia 81 NI p.D140fs NI NI NI NI NI 
108 Thrombocytopenia 37 Caucasian p.T529fs 423 AML (father) No No 
109 Thrombocytopenia 68 Caucasian p.M1I NI NI NI NI NI 
110 Neutropenia 64 NI p.M1I NI NI NI NI NI 
111 Neutropenia 78 Caucasian p.M1I NI NI NI NI NI 
112 Anemia 70 NI p.R369* NI NI NI NI NI 
113 MPN 40 Caucasian p.D140fs 278 Leukemia (family members, not specified) No Breast and uterine cancers (mother) 
114 MPN 76 Caucasian p.M316fs NI NI NI NI NI 
115 MPN, ET 41 NI p.Q306* NI NI NI NI NI 
116 MPN 85 NI p.K381* NI NI NI NI NI 
117 AML 48 Caucasian p.E2D 96 NI NI NI NI 
118* AML 54 NI p.G19R 61 NI NI NI 
119* AML 62 NI p.Y33H 516 NI NI NI 
120 AML 76 Caucasian p.M155I NI NI NI NI NI 
121 AML 56 NI p.M155I 613 No No No 
122* AML 63 Caucasian p.R164N 365 No No No 
123 AML 84 Caucasian p.P510S 216 NI NI NI 
124 AML 81 Caucasian p.M127K 15 No No No 
125 AML 47 Caucasian p.M155I NI NI NI NI NI 
126 AML 72 Caucasian p.G67R 180 No No No 
127 AML 72 Caucasian p.G67R 150 No No No 
128* AML 46 Caucasian p.M155I 146 No No Cancer of unknown origin (mother) 
129 AML 79 Caucasian p.A295T 241 No No Cancer of unknown origin (mother and father) 
130 AML 55 NI p.I298T NI NI NI NI NI 
131 AML 47 Caucasian p.E355K 19 No No No 
132 AML 67 Caucasian p.M155I 1056 No No No 
133 AML NI p.M155I NI NI NI NI NI 
134 AML 64 NI p.? 28 NI NI NI 
135 MDS 79 Caucasian p.G123S NI NI NI NI NI 
136 MDS 63 NI p.M155I NI NI NI NI NI 
137 MDS 73 Caucasian p.? 420 NI NI NI 
138 MDS 50 Caucasian p.G175S NI NI NI NI NI 
139 MDS 84 Caucasian p.P177S NI NI NI NI NI 
140 MDS 60 Caucasian p.P434L 303 NI NI NI 
141 MDS 83 Caucasian p.P510S NI NI NI NI NI 
142 MDS 78 Caucasian p.C568W 516 No No No 
143 MDS/MPN 56 Caucasian p.G587A 183 NI NI No 
144 MDS 92 Caucasian p.E426K NI NI NI NI NI 
145 MDS 65 NI p.P510S 456 NI NI NI 
146 MDS 62 Caucasian p.A555T 255 NI NI NI 
147 Pancytopenia 63 NI p.K9K NI NI NI NI NI 
148 Pancytopenia 81 Caucasian p.M155I NI NI NI NI NI 
149 Pancytopenia; SCC 77 NI p.M186L NI NI NI NI NI 
150 Pancytopenia 85 NI p.R219H NI NI NI NI NI 
151 Pancytopenia 84 NI p.R282H NI NI NI NI NI 
152 Pancytopenia 85 NI p.C294F 550 NI NI NI 
153 Pancytopenia 70 NI p.S493A NI NI NI NI NI 
154 Thrombocytopenia 88 Caucasian p.M155I 37 No No No 
155 Thrombocytopenia 78 NI p.T236M NI NI NI NI NI 
156 Thrombocytopenia 39 Caucasian p.? NI NI NI NI NI 
157 Thrombocytopenia 73 Caucasian p.? 31 NI NI NI 
158 Neutropenia 43 Caucasian p.? NI NI NI NI NI 
159 Anemia 69 Caucasian p.P251S 1777 No No No 
160 Anemia 78 Caucasian p.A583V NI NI NI NI NI 
161 MPN, PV 53 Caucasian p.R8Q 87 No No Cancer of unknown origin (brother) 
162 MPN, PV 61 Caucasian p.D32N 395 NI NI NI 
163 MPN, ET 72 NI p.A133V NI NI NI NI NI 
164 MPN 49 NI p.I215T 943 NI NI NI 
165 MPN 85 NI p.L216P NI NI NI NI NI 
166 MPN, ET 69 Caucasian p.T236M 918 No No No 
167 MPN 66 Caucasian p.V491I 3839 No No No 
168 MPN, ET 54 Caucasian p.V544L 664 NI NI NI 
169 MPN, ET 39 NI p.? NI NI NI NI NI 
170 MPN, ET Asian p.M155T NI NI NI NI NI 
171 MPN 46 Caucasian p.K187R NI NI NI NI NI 
172 Pancytopenia; LPL 77 AA p.R164W 10 No No No 
173 Y heavy chain disease; 52 NI p.R164W 7955 Myelofibrosis (mother) No Lung cancer (father) 
 MYD88 negative LPL          
174 CLL; breast cancer 51 NI p.R164W 1186 No FL (mother) Bladder & prostatic cancer (father) 
175 CLL 70 Caucasian p.P251S 1004 No No No 
176 MM 82 Caucasian p.R10Q 471 No No No 
177 AML 64 Asian  1703 Leukemia (maternal uncle)  Gastric cancer (paternal grandfather) 
178 AML 74 Caucasian  578 No No Sarcoma (father) 
179 AML 69 Caucasian  974 NI NI No 
180 AML 54 Caucasian  42282 No No Colon cancer (father) 
181 AML 70 Caucasian  455 No No Breast cancer (paternal aunt) 
182 AML 77 Caucasian  NI NI NI NI NI 
183 AML 70 Caucasian  81 No No No 
184 AML; DLBCL 74 Caucasian  NI No No Breast cancer (sisters × 2) 
185 MDS 75 Caucasian  1127 No No No 
186 MDS 71 Caucasian  2053 No No Cancer of unknown origin (mother and sister) 
187 MDS 65 Caucasian  2466 No No Lung cancer (father); breast cancer (father's sister) 
188 MDS 54 Caucasian  151 No No No 
189 MDS 69 Caucasian  689 No No Prostatic cancer (father) 
190 AML 30 NI  304 NI NI NI 
191 AML 63 Caucasian  21 No No No 
192 MDS 81 Caucasian  NI NI NI NI NI 
193 MDS 62 Caucasian  212 No No Yes 
194 MDS 80 Caucasian  NI NI NI NI NI 
195 Neutropenia 86 Caucasian  NI NI NI NI NI 
196* Normal 43 Caucasian p.M1I 65 MDS (father) No No 
197* Normal 69 Caucasian p.M1I 496 Myeloid neoplasm (mother) No No 
198* Normal 28 Caucasian p.D140fs 1044 AML (father) No No 
199* Normal 59 Caucasian p.D140fs NI Leukemia (father) NI NI 
200* Normal 66 Caucasian p.D140fs NI MDS (brother); AML (brothers); ALL (daughter) No Lung cancer (father) 
201* Normal 33  Caucasian p.K331del 614 MDS (father) No Prostatic cancer (paternal uncle); pancreatic cancer (maternal aunt); lung cancer (maternal cousins); bile duct cancer (maternal cousin); melanoma and stomach cancer (paternal uncle); breast cancer (maternal great aunt) 
202 Normal∼(donor) 71 Caucasian p.311* 367/PHSCT No No  
203 Normal∼(donor) 59 Caucasian p.M155I 2061/PHSCT No No No 
204 Normal∼(donor) 60 Caucasian p.V565M 725/PHSCT NI NI NI 
205 Normal∼(donor) 71 Caucasian p.T529fs 459/PHSCT No No No 

AA, African American; F, female; M, male; N, deceased; NI, no information; PHSCT, post-HSCT; Y, survived.

*

Germline variants confirmed by skin biopsies.

Reported in a prior study.9 

Targeted NGS

DNA was extracted from fresh bone marrow aspirates and NGS testing was performed using a targeted NGS panel at each institution. The ARUP myeloid malignancy NGS panel included 65 genes (supplemental Table 1), and targeted hybrid‐capture sequencing was performed using the SureselectXTHS kit (Agilent Technologies, Santa Clara, CA) following the manufacturer's protocol as described previously.7,8 The genes listed in NGS panels at each institution and the 53 common genes tested are summarized in supplemental Tables 1 and 2.

DDX41-specific variant classification and interpretation

Variants with a variant allele frequency (VAF) of 40% or above were presumed to be germline variants.7,8 Germline variants were classified as pathogenic/likely pathogenic variants (PV/LPV), described herein as CV or VUS according to ACMG/AMP guidelines (supplemental Table 3) with the following specific considerations.20 A pathogenic moderate criterion (PM2) was applied to variants with a Genome Aggregation Database (gnomAD) population frequency less than that of the 2 most frequent known pathogenic DDX41 variants: p.M1I and p.D140fs (both with gnomAD frequency of 0.008%). Another pathogenic moderate criterion (PM3) was used in a modified manner to account for the known mechanism of DDX41 second hits in affected individuals. This criterion was applied to the germline variant when a second pathogenic variant (presumed somatic) was also present in an affected patient with this variant in our study or reported in the literature. A pathogenic supporting criterion (PP3) was applied when the REVEL score for the variant was greater than 0.7.

Germline confirmation

Germline testing was performed prospectively on 12 patients (8 with CV and 4 with VUS) and 6 asymptomatic relatives who were referred to the genetics clinic based on the persistent presence of a DDX41 variant at near-heterozygous VAF and suspicious FH. Germline confirmation was performed as previously described using skin biopsies.7 The remaining patients either were not referred for genetic counseling or declined further testing.

Asymptomatic individuals with germline DDX41 variants under surveillance

Six asymptomatic relatives of the patients with HM with confirmed germline DDX41 CV underwent cancer surveillance (Tables 1 and 2, patients 196-201, all with CV) with bone marrow biopsies in conjunction with flow cytometric, cytogenetic, and NGS studies to establish a baseline. Bone marrow examination in all cases showed essentially normal trilineage hematopoiesis without evidence of malignancies, as reviewed by P.L. and M.W. independently. Furthermore, 4 patients with donor-derived DDX41 variants (2 CV and 2 VUS) after HSCT for previously diagnosed AML were included (Tables 1 and 2, patients 202-205), and all had unremarkable complete blood count (CBC) and 100% donor chimerism, confirmed by short tandem repeat testing at post-transplant surveillance.

Statistics

Descriptive statistics were used for patient epidemiologic characteristics and the number of somatic variants per case, and the results are summarized in figures as appropriate. Unpaired t test was used for all quantitative data, and Fisher exact test or χ2 test was used for qualitative data.8 OS was analyzed as a time-to-event date point using the Kaplan-Meier method.21-24 Time-to-event data were also analyzed with Cox proportional hazards regression to calculate hazard ratios (HR) by multivariate analysis.25,26

Literature review and gnomAD database search

A PubMed search for cases of sporadic and familial HM with germline DDX41 variant was performed. Individual studies were reviewed, and the variants were reclassified and summarized in Figure 2A. Clinical outcome information from 18 additional AML and high-grade MDS cases with germline DDX41 variants in association with 186 age-matched patients with DDX41 wild-type (WT) AML from a previous study7 was collected. Furthermore, additional data on OS of 3128 age-matched patients with MDS in the literature27 and 1040 patients with AML in cBioPortal (median age, 68 years; range, 47-99 years; access date, 28 February 2022) were retrieved and reanalyzed to extend OS analysis (supplemental Figure 2A). Where available in publications,15,28,29 ethnicity was reanalyzed in combination with the current study population and summarized in Figure 2B-E. GnomAD was searched to acquire the minor allele frequencies (MAF) of variants and was incorporated in supplemental Table 3.

DDX41 variant landscape, genetic profiles, and ethnic differences of patients with HM

Among the 9821 unrelated and unselected patients with HM, 195 (2%) were found to have at least 1 DDX41 variant; of those, 176 (1.8%) patients had a putative germline DDX41 variant and 19 (0.2%) had somatic variants alone (Figure 1A). The 176 HM cases with germline variants (Tables 1 and 2, patients 1-176) included 84 AML, 40 MDS, 15 MPN, 32 cases of cytopenia, 4 B-cell lymphoma, and 1 MM. The 19 cases (Tables 1 and 2, patients 177-195) with only somatic variants included 10 AML, 8 MDS, and 1 cytopenia. Overall, 82 distinct presumed germline variants were identified, among which 39 were classified as CV (red in Figure 1B) and 43 as VUS (blue in Figure 1B; supplemental Table 3) according to the proposed classification criteria. Loss of function variants, recurrent missense variants in association with a low MAF with specific exceptions (eg, p.M155I and p.P510S), and novel missense variants accompanied by pathogenic somatic DDX41 variants (Figure 1A) were generally considered CV. Here we reported 53 novel germline (15 CV and 38 VUS) and 13 novel somatic variants (4 CV and 9 VUS, underlined in Figure 1B) among which the 5 new missense germline CVs (Table 1, 58, 65, 89, 90, and 93) were all accompanied by previously characterized somatic pathogenic variants (p.R525H, p.G530D, or p.E345D).

The previously reported germline and somatic DDX41 variants in HM,7,10,11,28,30-34 together with those in the current study, are summarized in Figure 2A. Most germline CV (63% in this study and 68% by literature review) were loss of function mutations, including start codon loss (p.M1I), nonsense, frameshift, or mutations disrupting splicing sites (Figures 1B and 2A), concentrated upstream to the DEAD box domain. p.M1I and p.D140fs, the most common germline CVs (19% and 15% of all, respectively), were primarily identified in White patients (Figure 2B). Missense germline CV, although less common and most often classified as VUS according to unmodified ACMG guidelines, were reported in this study and literature accompanied by pathogenic somatic variants.7,10,11,28-34 Interestingly, approximately half of Asian patients with HM carried missense germline CV (Figure 2C), with Y259C being the most common hotspot (Figure 2D), whereas only 1 p.M1I28 and 0 p.D140fs variants were documented in Asian patients (Figure 2B). Data obtained from the gnomAD database showed similar ethnic differences (not shown). This unique ethnic difference29 in DDX41 CV was also highlighted by p.A500fs, seen exclusively in Asian patients (Figure 2D) as the second most common germline CV and more frequent somatic variants alone (Figure 2E).

Concomitant somatic variants were detected by NGS in patients with germline DDX41 CV (red) and VUS (blue in Figure 3). Beyond somatic DDX41 variants, ASXL1 was the second most commonly mutated gene concomitant with germline DDX41 CV (28%), followed by DNMT3A (13%) and TET2 (11%), similar to those in HM without germline DDX41 variants.35 In stark contrast, the most frequent concomitant variant in patients with HM with DDX41 VUS was the JAK2 p.V617F mutation (18%; Figure 3), and most (82%, 9 of 11) exhibited a leading VAF (Table 1), suggestive of a disease driver mutation. The genetic profiles in 19 patients with somatic DDX41 CV alone appeared similar to those with somatic DDX41 VUS (Figure 3; supplemental Figure 1). Interestingly, the median age of patients with HM with CV (68 years; Table 3) was greater than patients with VUS (63 years; P = .01). Similar to previous reports,7,8,10,32 there was a striking male predominance of patients with CV (74%, Table 3) compared with WT control cohorts (50%, P < .0001), which was markedly diminished in patients with VUS (62%).

Figure 3.

Integrated genetic profiles of the 195 HM patients with epidemiologic characteristics grouped by different HM diagnoses. A total of 176 patients with presumed germline (gl DDX41) 116 CV and 60 VUS are grouped (CV in red and VUS in blue, respectively), along with the associated somatic DDX41 (s DDX41), concomitant somatic variants, and cytogenetics. In addition, 19 patients with HM with somatic DDX41 variants in the absence of germline variants are appended to the right of the variant table, 13 CV in red and 6 VUS in blue. Each column represents 1 patient. The concomitant variants are grouped into 6 categories based on gene function: epigenetic, epigenetic regulators, genes involving DNA methylation or histone acetylation, and deacetylation (light green); SFs, RNA splicing factors (purple); TFs, transcription factors (orange); signaling, molecules in tyrosine kinase pathway or RAS/MAPK pathways (pink); C, cohesins (light blue); and others (dark blue), genes with function beyond the above categories. Each bar represents 1 variant, and split bars indicate 2 or more variants in the same gene. A&B, AML and breast cancer; CLL & B, chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) and breast cancer; complex, complex karyotype; DLBCL, diffuse large B-cell lymphoma; gl DDX41, germline DDX41 variants; LPL, lymphoplasmacytic lymphoma (MYD88 negative); LR, low risk; MBL, monoclonal B-cell lymphocytosis; MM, multiple myeloma; NI, no information; NL, normal; NM, no mutation; RCA, recurrent cytogenetic abnormalities in AML; s DDX41, somatic DDX41 variants.

Figure 3.

Integrated genetic profiles of the 195 HM patients with epidemiologic characteristics grouped by different HM diagnoses. A total of 176 patients with presumed germline (gl DDX41) 116 CV and 60 VUS are grouped (CV in red and VUS in blue, respectively), along with the associated somatic DDX41 (s DDX41), concomitant somatic variants, and cytogenetics. In addition, 19 patients with HM with somatic DDX41 variants in the absence of germline variants are appended to the right of the variant table, 13 CV in red and 6 VUS in blue. Each column represents 1 patient. The concomitant variants are grouped into 6 categories based on gene function: epigenetic, epigenetic regulators, genes involving DNA methylation or histone acetylation, and deacetylation (light green); SFs, RNA splicing factors (purple); TFs, transcription factors (orange); signaling, molecules in tyrosine kinase pathway or RAS/MAPK pathways (pink); C, cohesins (light blue); and others (dark blue), genes with function beyond the above categories. Each bar represents 1 variant, and split bars indicate 2 or more variants in the same gene. A&B, AML and breast cancer; CLL & B, chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) and breast cancer; complex, complex karyotype; DLBCL, diffuse large B-cell lymphoma; gl DDX41, germline DDX41 variants; LPL, lymphoplasmacytic lymphoma (MYD88 negative); LR, low risk; MBL, monoclonal B-cell lymphocytosis; MM, multiple myeloma; NI, no information; NL, normal; NM, no mutation; RCA, recurrent cytogenetic abnormalities in AML; s DDX41, somatic DDX41 variants.

Close modal
Table 3.

Summary of ages and sexes of patients with HM with DDX41 CV, and VUS and controls

DiseaseGermline DDX41DDX41+ CV (reference)DDX41+ VUSP (a)DDX41 WTP (b)
HM 111 60  4307  
 Median age (y, range) 68 (37-90) 63 (7-92) .01* 67 (18-100) .35 
 Sex male/female (M%) 82/29 (74%) 37/23(62%) .10 2154/2153 (50%) <.0001**** 
AML 66 18  1365  
 Median age (y, range) 69 (47-90) 62 (7-84) .02* 64 (18-90) .002** 
Sex male/female (M%) 49/17 (71%) 10/8 (56%) .12 737/628 (54%) .001** 
MDS 28 12  1109  
 Median age (y, range) 72 (60-88) 69 (50-92) .49 74 (36-98) 0.64 
 Sex male/female (M%) 21/7 (75%) 9/3 (75%) >.99 555/554 (50%) .009** 
MPN 11  470  
 Median age (y, range) 59 (40-85) 54 (7-85) .64 66 (18-95) .74 
 Sex male/female (M%) 1/3 (25%) 5/6 (45%) .33 192/287 (40%) .36 
DiseaseGermline DDX41DDX41+ CV (reference)DDX41+ VUSP (a)DDX41 WTP (b)
HM 111 60  4307  
 Median age (y, range) 68 (37-90) 63 (7-92) .01* 67 (18-100) .35 
 Sex male/female (M%) 82/29 (74%) 37/23(62%) .10 2154/2153 (50%) <.0001**** 
AML 66 18  1365  
 Median age (y, range) 69 (47-90) 62 (7-84) .02* 64 (18-90) .002** 
Sex male/female (M%) 49/17 (71%) 10/8 (56%) .12 737/628 (54%) .001** 
MDS 28 12  1109  
 Median age (y, range) 72 (60-88) 69 (50-92) .49 74 (36-98) 0.64 
 Sex male/female (M%) 21/7 (75%) 9/3 (75%) >.99 555/554 (50%) .009** 
MPN 11  470  
 Median age (y, range) 59 (40-85) 54 (7-85) .64 66 (18-95) .74 
 Sex male/female (M%) 1/3 (25%) 5/6 (45%) .33 192/287 (40%) .36 

P value (a) applies to DDX41+ CV vs DDX41+ VUS, and P value (b) applies to DDX41+ CV vs DDX41 WT.

*

P < .05; **P < .01; ****P < .0001.

AML/MDS with germline DDX41 CV is a distinct and the most common HM

By the proposed variant classification framework, patients with AML/MDS with DDX41-presumed germline CV and VUS were readily distinguished by differing genetic characteristics, epidemiologic features, and OS. Seventy-nine percent of patients with CV developed later-onset AML/MDS, whereas approximately 52% of those carrying VUS manifested with AML/MDS including a subset of early-onset AML (Tables 2 and 3). Specifically, the median age at the time of AML diagnosis was 69 years in patients carrying CV in contrast to those with VUS, in which some were children or young adults (median, 62 years; P = .02), and sporadic AML in adults (median, 64 years; P = .002; Table 3). Interestingly, the median age at MDS diagnosis (72 years) was similar to that in patients with AML with germline CV (Table 3; P > .05), whereas the median ages of patients with MDS carrying either VUS or WT DDX41 was older than those in patients with AML with the same genotype (Table 3; 69 in MDS vs 62 in AML with VUS, P = .08; 74 in MDS vs 64 in AML with WT, P < .0001), as MDS is primarily a disease of the elderly.

More frequent somatic DDX41 variants (Figure 4A) and a lower somatic mutation burden (Figure 4B) were observed in patients with AML and MDS with germline DDX41 CV compared with those with VUS or without germline DDX41 variants (Figure 4B). Mutated NPM1, rarely seen in patients with AML with CV (1.5%), was the most common concomitant variant, some associated with FLT3-ITD, in AML with VUS (37%; P < .0001; Figures 3 and 4C-D). In addition, t(8;21), inv(16), and biallelic CEBPA mutations were identified in 4 patients with AML with VUS, whereas none were seen in cases with CV (Figures 3 and 4E; P < .0001). Furthermore, mutations involved in tyrosine kinase and RAS/MAPK pathways were significantly more frequent in patients with AML/MDS with VUS than those with CV (Figures 3 and 4C-E; P < .0001). Germline CV-related AML/MDS cases shared similar mutational profiles; however, a higher somatic mutation burden was observed in patients with AML (Figure 4B, red bars; 1.6 in AML vs 0.7 in MDS; P = .0016). Mutations in other splicing factors, although previously reported to be mutually exclusive to DDX41 variants,36 were seen in patients with CV and enriched in those with VUS (Figures 3 and 4E). TP53 mutations were infrequent, seen in 7% of AML/MDS with CV, 12.5% with VUS, and 9% with WT DDX41 (Figure 4D-E; P > .05). In patients with AML/MDS with CV with cytogenetic results, 80% (53 of 66) were associated with a normal karyotype, and 20% (13 of 66) had an abnormal karyotype (9 low-risk and 4 complex karyotypes; Figures 3 and 5A; Table 1).

Figure 4.

Genetic characteristics of patients with AML/MDS with germline variants in DDX41. (A) The occurrence of somatic DDX41 variants in patients with AML is closely linked to the presence of germline DDX41 CV (79%; 52 of 66), in comparison with patients with VUS (5.6%, 1 of 18, P < .0001) or patients not carrying germline DDX41 variants (DDX41, 0.2%; 3 of 1365, P < .0001). A similar trend is seen in patients with MDS (79% in CV, 0% in VUS, and 0.1% in DDX41, P < .0001). (B) A lower somatic mutation burden, calculated by the number of total concomitant somatic variants (excluding somatic DDX41 variants) per case, is seen in patients with AML with CV (mean ± standard error of the mean: 1.6 ± 0.2) compared with patients with AML with wild-type DDX41 (DDX41, 3.7 ± 0.07, P < .0001) and those with VUS (2.6 ± 0.4, P = .03). Similarly, in MDS, a lower somatic mutation burden is seen in patients with CV (0.7 ± 0.1) in contrast to those with wild-type DDX41 (DDX41, 2.7 ± 0.06, P < .0001) or VUS (3.2 ± 0.5, P < .0001). (C-D) Circos plot diagrams illustrate the pairwise co-occurrence of somatic variants and cytogenetic abnormalities in 94 patients with AML/MDS with germline CV (C) and 30 with VUS (D). Genetic variants and cytogenetic events listed in Figure 3 appear in descending order clockwise, starting at 12 o’clock. Each link (ribbon) indicates pairwise co-occurrence of mutational events, and the width of the ribbons indicates the frequency of the co-occurrent events. The occurrence of germline and somatic DDX41 variants is indicated in red and yellow ribbons, respectively. Variants in signaling and RAS/MAPK pathways are labeled in pink; NPM1 and TP53 variants are labeled in black and green, respectively; the remaining variants are labeled in gray. s (yellow) in D, somatic DDX41; SF (purple), RNA splicing factors; TF (orange), transcription factors; S (pink) in panel C, signaling; O (gray), others; # (blue), cohesin; ! (black), NPM1; @ (green), TP53; nl CG, normal cytogenetics; a CG, abnormal cytogenetics. (E) Frequencies of somatic DDX41 and other concurrent variants in AML/MDS patients. For each gene or genetic category, the percentage of mutations is displayed, associated with either germline CV (red bars, gl DDX41+ CV), VUS (blue bars, gl DDX41+ VUS), or wild-type DDX41 (green bars, gl DDX41). s DDX41, somatic DDX41 variants; epigenetics, genes involving DNA methylation or histone acetylation and deacetylation; signaling transduction, molecules in tyrosine kinase pathway or RAS/MAPK pathways; RCA, recurrent cytogenetic abnormalities in AML. *P < .05; ****P < .0001.

Figure 4.

Genetic characteristics of patients with AML/MDS with germline variants in DDX41. (A) The occurrence of somatic DDX41 variants in patients with AML is closely linked to the presence of germline DDX41 CV (79%; 52 of 66), in comparison with patients with VUS (5.6%, 1 of 18, P < .0001) or patients not carrying germline DDX41 variants (DDX41, 0.2%; 3 of 1365, P < .0001). A similar trend is seen in patients with MDS (79% in CV, 0% in VUS, and 0.1% in DDX41, P < .0001). (B) A lower somatic mutation burden, calculated by the number of total concomitant somatic variants (excluding somatic DDX41 variants) per case, is seen in patients with AML with CV (mean ± standard error of the mean: 1.6 ± 0.2) compared with patients with AML with wild-type DDX41 (DDX41, 3.7 ± 0.07, P < .0001) and those with VUS (2.6 ± 0.4, P = .03). Similarly, in MDS, a lower somatic mutation burden is seen in patients with CV (0.7 ± 0.1) in contrast to those with wild-type DDX41 (DDX41, 2.7 ± 0.06, P < .0001) or VUS (3.2 ± 0.5, P < .0001). (C-D) Circos plot diagrams illustrate the pairwise co-occurrence of somatic variants and cytogenetic abnormalities in 94 patients with AML/MDS with germline CV (C) and 30 with VUS (D). Genetic variants and cytogenetic events listed in Figure 3 appear in descending order clockwise, starting at 12 o’clock. Each link (ribbon) indicates pairwise co-occurrence of mutational events, and the width of the ribbons indicates the frequency of the co-occurrent events. The occurrence of germline and somatic DDX41 variants is indicated in red and yellow ribbons, respectively. Variants in signaling and RAS/MAPK pathways are labeled in pink; NPM1 and TP53 variants are labeled in black and green, respectively; the remaining variants are labeled in gray. s (yellow) in D, somatic DDX41; SF (purple), RNA splicing factors; TF (orange), transcription factors; S (pink) in panel C, signaling; O (gray), others; # (blue), cohesin; ! (black), NPM1; @ (green), TP53; nl CG, normal cytogenetics; a CG, abnormal cytogenetics. (E) Frequencies of somatic DDX41 and other concurrent variants in AML/MDS patients. For each gene or genetic category, the percentage of mutations is displayed, associated with either germline CV (red bars, gl DDX41+ CV), VUS (blue bars, gl DDX41+ VUS), or wild-type DDX41 (green bars, gl DDX41). s DDX41, somatic DDX41 variants; epigenetics, genes involving DNA methylation or histone acetylation and deacetylation; signaling transduction, molecules in tyrosine kinase pathway or RAS/MAPK pathways; RCA, recurrent cytogenetic abnormalities in AML. *P < .05; ****P < .0001.

Close modal
Figure 5.

Common clinical, hematologic, pathologic, and genetic features and superior OS in AML/MDS patients with germline DDX41 CV. (A) Both patients with AML and MDS with germline DDX41 CV present a similarly indolent and chronic course of cytopenia years before the diagnosis of an overt myeloid neoplasm. Furthermore, the bone marrow examination shows predominantly normal to hypocellular marrow in AML (86%) and MDS (75%, P > .05), and a borderline increase in blasts is seen in patients with AML (31% in AML vs 8% in MDS, P < .0001). Most patients with AML (79%) and MDS (85%, P > .05) carry normal karyotypes with similar germline DDX41 variant subtypes and somatic mutation profiles. (B) The median OS of 57 patients with AML with CV (red line, CV AML, not reached) is significantly longer than that of 13 patients with AML with VUS (blue line, VUS AML, 613 days, P = .02) or 158 patients with DDX41 wild-type AML (dark green line, DDX41 or WT AML, 630 days, P < .0001) in the current study and 1040 patients documented in cBioPortal (lavender line, DDX41 or WT AML R 433 days, P < .0001). Similarly, the median OS of 24 patients with MDS with CV (orange line, CV MDS, not reached) is significantly longer than that of 7 patients with MDS with DDX41 VUS (green line, VUS MDS, 468 days, P = .003) or 87 patients with DDX41 WT MDS (purple line, DDX41 or WT MDS 1425 days, P = .03) in this study and 3128 patients reported recently (navy blue line, DDX41 or WT MDS R, 1116 days, P = .003).27 (C-D) Statistical characteristics of the median OS in each genotype and disease group (C) and P values in pairwise comparisons (D) are listed in the tables. (E) The results of univariate analysis for different factors predicting OS in patients with AML/MDS with DDX41 CV show that the superior OS is not impacted by patient’s age, duration or severity of cytopenia, blast count, presence of abnormal cytogenetics, somatic DDX41 or other concomitant variants, somatic mutation burden, or different types of germline DDX41 CV. Each circle represents the mean HR calculated by Cox proportional hazards regression, and the horizontal lines represent the 95% confidence interval (CI) for the subgroup’s HR. Right of the dashed vertical line (HR = 1), unfavorable OS; left of the dashed line, favorable OS. WBC, white blood cells; Hgb, hemoglobin; PLT, platelet count; BM, bone marrow; gl DDX41, germline DDX41 CV, s DDX41, somatic DDX41 variants. *P < .05; **P < .01; ***P < .001; ****P < .0001; NS, not significant, P > .05.

Figure 5.

Common clinical, hematologic, pathologic, and genetic features and superior OS in AML/MDS patients with germline DDX41 CV. (A) Both patients with AML and MDS with germline DDX41 CV present a similarly indolent and chronic course of cytopenia years before the diagnosis of an overt myeloid neoplasm. Furthermore, the bone marrow examination shows predominantly normal to hypocellular marrow in AML (86%) and MDS (75%, P > .05), and a borderline increase in blasts is seen in patients with AML (31% in AML vs 8% in MDS, P < .0001). Most patients with AML (79%) and MDS (85%, P > .05) carry normal karyotypes with similar germline DDX41 variant subtypes and somatic mutation profiles. (B) The median OS of 57 patients with AML with CV (red line, CV AML, not reached) is significantly longer than that of 13 patients with AML with VUS (blue line, VUS AML, 613 days, P = .02) or 158 patients with DDX41 wild-type AML (dark green line, DDX41 or WT AML, 630 days, P < .0001) in the current study and 1040 patients documented in cBioPortal (lavender line, DDX41 or WT AML R 433 days, P < .0001). Similarly, the median OS of 24 patients with MDS with CV (orange line, CV MDS, not reached) is significantly longer than that of 7 patients with MDS with DDX41 VUS (green line, VUS MDS, 468 days, P = .003) or 87 patients with DDX41 WT MDS (purple line, DDX41 or WT MDS 1425 days, P = .03) in this study and 3128 patients reported recently (navy blue line, DDX41 or WT MDS R, 1116 days, P = .003).27 (C-D) Statistical characteristics of the median OS in each genotype and disease group (C) and P values in pairwise comparisons (D) are listed in the tables. (E) The results of univariate analysis for different factors predicting OS in patients with AML/MDS with DDX41 CV show that the superior OS is not impacted by patient’s age, duration or severity of cytopenia, blast count, presence of abnormal cytogenetics, somatic DDX41 or other concomitant variants, somatic mutation burden, or different types of germline DDX41 CV. Each circle represents the mean HR calculated by Cox proportional hazards regression, and the horizontal lines represent the 95% confidence interval (CI) for the subgroup’s HR. Right of the dashed vertical line (HR = 1), unfavorable OS; left of the dashed line, favorable OS. WBC, white blood cells; Hgb, hemoglobin; PLT, platelet count; BM, bone marrow; gl DDX41, germline DDX41 CV, s DDX41, somatic DDX41 variants. *P < .05; **P < .01; ***P < .001; ****P < .0001; NS, not significant, P > .05.

Close modal

Similar to that reported previously,8 indolent courses of cytopenia (Figure 5A) were seen prior to an overt MN, and there was a borderline increase in blasts in patients with AML with DDX41 CV (31% in AML vs 8% in MDS; P < .0001). Similar genetic features and DDX41 CV types were seen in both normo/hypocellular AML/MDS with CV (Figure 5A). Fifty-seven patients with AML with CV had a favorable OS (Figure 5B-D; supplemental Figure 2A; median OS not reached) compared with 13 with VUS (613 days; P = .02) or 158 WT patients; a similar trend was seen in patients with MDS (Figure 5B-D). This superior OS, similar to a previous study7 (supplemental Figure 2A), appeared independent of blasts (Figure 5B-E; P = .30), patient age (Figure 5E; supplemental Figure 2B; P = .69), sex (P = .61), somatic variant burden, presence of somatic DDX41 variants (Figure 5E; supplemental Figure 2C; P = .95), and other concomitant variants (P = .50) including TP53 (supplemental Figure 2D; P = .39), regardless of cytogenetic abnormalities (P = .91) or type of germline DDX41 CV (Figure 5E).

Among the 50 patients with AML/MDS with CV and available FH, only 18% (9 of 50) had FH of MN, and 2% (1 of 50) had FH of lymphoma, whereas nonhematologic tumors were rather common (32%, 16 of 50; Table 2). In contrast, none of the patients with VUS had FH of myeloid or lymphoid neoplasms (Table 2). In this study, 2 patients with MN with CV had concomitant lymphoid or solid tumors, similar to previous reports (Table 1, patients 60 and 76).7,19

Germline DDX41 CV predisposing to MPN and lymphoma

We further focused on 15 patients (4 CV and 11 VUS) with MPN. Male predominance was not observed here in contrast to patients with AML/MDS (Table 3). A similar tendency for more frequent somatic DDX41 mutation (Figure 6A;,P < .0001) and lower somatic mutation burden (Figure 6B;,P = .05) was seen in patients with CV compared with those with WT DDX41. Interestingly, JAK2 V617F and CALR mutations, absent in all patients with CV, were identified in 72% of patients with VUS (Figures 3 and 6C), most (7 of 8) being a leading clone (Table 1; VAFs at 45%, 85%, 44%, 26%, 18%, 47%, and 26%, respectively), whose frequency was almost identical to that in patients with DDX41 WT (Figure 6C-E). Karyotypes in patients with MPN with CV were normal, and TP53 mutations were not identified (Figures 3 and 6D).

Figure 6.

MPN and lymphoma predisposed by germline DDX41 CV. (A) The occurrence of somatic DDX41 variants in MPN patients is more frequent in patients with germline CV (25%) compared with patients with VUS (9%; 1/11, P = .4) or patients not carrying germline DDX41 variants (DDX41, 0%, P < .0001). (B) There appears to be a lower concomitant somatic mutation burden in patients with CV (mean ± standard error of the mean: 0.5 ± 0.5), compared with those with WT DDX41 (DDX41, 2.6 ± 0.1, P = .05) and VUS (1.5 ± 0.4, P > .05). (C) No mutations in JAK2 or CALR were seen in MPN with CV, whereas these canonical variants are seen in 73% (8 of 11) of MPN patients with VUS and 82% in the WT cohort (P < .0001). (D-E) Circos plot diagrams illustrate the pairwise co-occurrence of variants and cytogenetic events in MPN patients with germline CV (D) and VUS (E). Genetic variants and cytogenetic events listed in Figure 2 appear in descending order clockwise starting at 12 o’clock. Each link (ribbon) indicates the pairwise co-occurrence of mutational events, and the width of the ribbons indicates the frequency of the co-occurrent events. TF (orange), transcription factors; nl CG (green), normal cytogenetics; s (yellow), somatic DDX41; E (light green), epigenetic modulators; SF (purple), RNA splicing factors; C (pink), CALR. (F) HM predisposed by germline DDX41 CV. AML (55%) and MDS (24%) are the most common entities predisposed by DDX41 CV, followed by cytopenia (16%), MPN (3%), and lymphoma (3%). ****P < .0001.

Figure 6.

MPN and lymphoma predisposed by germline DDX41 CV. (A) The occurrence of somatic DDX41 variants in MPN patients is more frequent in patients with germline CV (25%) compared with patients with VUS (9%; 1/11, P = .4) or patients not carrying germline DDX41 variants (DDX41, 0%, P < .0001). (B) There appears to be a lower concomitant somatic mutation burden in patients with CV (mean ± standard error of the mean: 0.5 ± 0.5), compared with those with WT DDX41 (DDX41, 2.6 ± 0.1, P = .05) and VUS (1.5 ± 0.4, P > .05). (C) No mutations in JAK2 or CALR were seen in MPN with CV, whereas these canonical variants are seen in 73% (8 of 11) of MPN patients with VUS and 82% in the WT cohort (P < .0001). (D-E) Circos plot diagrams illustrate the pairwise co-occurrence of variants and cytogenetic events in MPN patients with germline CV (D) and VUS (E). Genetic variants and cytogenetic events listed in Figure 2 appear in descending order clockwise starting at 12 o’clock. Each link (ribbon) indicates the pairwise co-occurrence of mutational events, and the width of the ribbons indicates the frequency of the co-occurrent events. TF (orange), transcription factors; nl CG (green), normal cytogenetics; s (yellow), somatic DDX41; E (light green), epigenetic modulators; SF (purple), RNA splicing factors; C (pink), CALR. (F) HM predisposed by germline DDX41 CV. AML (55%) and MDS (24%) are the most common entities predisposed by DDX41 CV, followed by cytopenia (16%), MPN (3%), and lymphoma (3%). ****P < .0001.

Close modal

Beyond MN, 3 unrelated patients with B-cell lymphomas were linked by an identical presumably germline DDX41 variant, p.R164W (Tables 1 and 2, patients 172-174). Two patients (patients 173 and 174) carrying this variant developed earlier-onset lymphoma at age 51 and 52 years, respectively. Both patients had affected family members diagnosed with either myelofibrosis or follicular lymphoma (Table 2), adding further support to this likely CV predisposing to lymphoma. A third patient with this variant (pt 172) developed MYD88-negative lymphoplasmacytic lymphoma (LPL) and pancytopenia at age 77 years without significant FH. A somatic SF3B1 variant was also identified in this patient, which might potentially contribute to the patient’s reported pancytopenia. Importantly, p.R164W was previously reported in a family with LPD, in which all 5 affected individuals developed lymphoma (4) and multiple myeloma (1), whereas all 3 unaffected individuals of similar age did not.19 

The prevalence of disease entities in patients with HM with germline DDX41 CV can be summarized as follows: AML/MDS (Figure 6F, 79%), as a distinct clinical entity, is the most common disease, followed by cytopenia (15%), MPN (3%), and lymphoma (3%). Per the data collected at ARUP Laboratories, approximately 3.0% (41 of 1406, 29 CV and 12 VUS) of patients with AML, 1.4% (16 of 1125, 9 CV and 7 VUS) of patients with MDS, and 2.0% (10 of 489, 3 CV and 7 VUS) of patients with MPN carried a presumed germline DDX41 variant. The prevalence of DDX41-related lymphoma remains uncertain, as this disease is not fully acknowledged, and NGS testing for patients with LPD is not yet a standard of care.

Asymptomatic carriers with germline CV

Six asymptomatic individuals with normal CBC and germline DDX41 CV who were related to patients with HM in this study underwent tumor surveillance (Tables 1 and 2, patients 196-201); their median age (51 years; range, 28-69 years) was significantly lower compared with patients with overt diseases (supplemental Figure 3A; P < .0001). No somatic DDX41 or other mutations were identified by NGS testing (supplemental Figure 3B), and all 5 patients who underwent cytogenetic testing showed a normal karyotype (Table 1). Furthermore, 4 patients with HSCT for previously diagnosed AML were found to have donor-derived DDX41 variants (2 CV and 2 VUS) during surveillance (Table 1, patients 202-205). All 4 had unremarkable CBC and complete engraftment confirmed by 100% donor chimerism with a median follow-up of 30 months in surveillance (Table 2) without biopsy proving recurrent/residual AML.

In this study, we analyzed the genetic, epidemiologic and hematologic features, and clinical outcomes of 116 patients with HM with germline DDX41 CV and 60 with VUS identified by NGS. Using the proposed DDX41-specific variant classification framework, we identified a phenotype encompassing primarily AML/MDS and rarely MPN and lymphoma associated with germline CV. A complete germline CV landscape is critical to direct appropriate clinical management, preventive care, and family screening.

In this largest cohort to date of 176 patients with HM with DDX41 germline variants, we proposed that the acquisition of a pathogenic somatic DDX41 variant is a compelling criterion for causality in germline variant interpretation. The marked segregation in genetic profiles, epidemiologic features, and clinical behavior separating patients with AML/MDS with germline CV from those with VUS provided validation for this modified variant classification strategy.7,20,29 Patients with HM with germline DDX41 VUS behaved similarly to patients who were WT, in which canonical somatic mutations or recurrent genetic alterations in other genes were common as drivers of tumorigenesis.

Patients with AML and MDS, the most common entities associated with germline CV, present during their late 60s or early 70s with indolent cytopenia years before overt myeloid neoplasia, with a male predominance.7,8,10,29,32,37 Furthermore, both were characterized by frequent somatic DDX41 variants, infrequent other somatic mutations, largely normal karyotype, normo/hypocellular marrow, and a favorable OS.7,8,10,29,32,37 This superior OS was independent of blast counts or additional genetic abnormalities, regardless of the patients’ age, sex, or specific germline CV. This unique disease was also characterized by near mutual exclusion of recurrent cytogenetic abnormalities and canonical mutations in FLT3, NPM1, and CEPBA in sporadic AML. Thus, AML/MDS caused by DDX41 CV appear to be a spectrum of the same disease, unlike sporadic de novo AML and MDS, caused by completely different pathogenic mechanisms. Beyond AML/MDS, unrelated patients with MPN and B-cell lymphoma were linked to germline DDX41 CV. Further studies identifying more germline CV are warranted to provide more insights into disease prevalence, characteristic pathologic features, the underlying mechanisms, and genotype-phenotype correlation in MPN and lymphoma19 to further refine clinical management.

Unique ethnic differences were highlighted by different recurrent CVs seen nearly exclusively in White or Asian patients and more common missense CV in Asian patients.7,10,11,28-34 There is also an urgent need for gene-specific classification guidelines by expert panels, without which a large number of missense CV are classified as VUS, and for international collaboration to fully characterize the CV landscape. Further studies are needed to address the currently uncertain significance of rare missense germline variants, especially those accompanied by rare noncanonical somatic DDX41 variants (patient 150, Table 1). Germline confirmation of DDX41 variants was limited in this study, partially because of the setting of a national reference laboratory. Creating gene-specific diagnostic and management guidelines could raise awareness of this disease and provide necessary guidance for germline confirmation.

This is the first study to expand the link of germline DDX41 CV to MPN and lymphoma beyond AML/MDS by outlining the CV landscape in unselected and unrelated patients. AML/MDS caused by germline CV is 1 distinct clinical entity with relative indolent course and favorable outcomes, as shown by this and other studies. Our study presents the first and most complete characterization of germline CV profiles to date and highlights the need for guidelines addressing variant classification, patient management, carrier surveillance, and stem cell donor selection.

Contribution: P.L. designed the study and drafted the manuscript; T.W., S.B., M.W., W.X., W.C., D.P., H.-Y.W., L.L., and C.A.K. collected patients’ clinical and family history and cytogenetic and molecular data; J.V. and T.K. examined patients and performed DDX41 germline testing; P.L., T.W., W.X., W.C., D.P., H.-Y.W., S.S.M., L.L., C.A.K., and S.B. interpreted and classified all variants by NGS testing; P.L. and M.W. examined the bone marrow biopsies for healthy individuals in cancer surveillance; and all authors reviewed and approved the final manuscript.

Conflict-of-interest disclosure: The authors declare no competing financial interests.

Correspondence: Peng Li, University of Utah, 500 Chipeta Way, Salt Lake City, UT 84108; e-mail, pengl.li@aruplab.com.

For original and additional data, please contact Peng Li via peng.li@aruplab.com or peng.li@hsc.utah.edu.

The online version of this article contains a data supplement.

The publication costs of this article were defrayed in part by page charge payment. Therefore, and solely to indicate this fact, this article is hereby marked “advertisement” in accordance with 18 USC section 1734.

1.
Klco
JM
,
Mullighan
CG
.
Advances in germline predisposition to acute leukaemias and myeloid neoplasms
.
Nat Rev Cancer.
2021
;
21
(
2
):
122
-
137
.
2.
Cannon-Albright
LA
,
Thomas
A
,
Goldgar
DE
, et al
.
Familiality of cancer in Utah
.
Cancer Res.
1994
;
54
(
9
):
2378
-
2385
.
3.
Kerber
RA
,
O’Brien
E
.
A cohort study of cancer risk in relation to family histories of cancer in the Utah population database
.
Cancer.
2005
;
103
(
9
):
1906
-
1915
.
4.
Arber
DA
,
Orazi
A
,
Hasserjian
R
, et al
.
The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia
.
Blood.
2016
;
127
(
20
):
2391
-
2405
.
5.
Zhang
J
,
Walsh
MF
,
Wu
G
, et al
.
Germline mutations in predisposition genes in pediatric cancer
.
N Engl J Med.
2015
;
373
(
24
):
2336
-
2346
.
6.
Huang
KL
,
Mashl
RJ
,
Wu
Y
, et al;
Cancer Genome Atlas Research Network
.
Pathogenic germline variants in 10,389 adult cancers
.
Cell.
2018
;
173
(
2
):
355
-
370.e14
.
7.
Sébert
M
,
Passet
M
,
Raimbault
A
, et al
.
Germline DDX41 mutations define a significant entity within adult MDS/AML patients
.
Blood.
2019
;
134
(
17
):
1441
-
1444
.
8.
Li
P
,
White
T
,
Xie
W
, et al
.
AML with germline DDX41 variants is a clinicopathologically distinct entity with an indolent clinical course and favorable outcome
.
Leukemia
.
2022
;
36
(
3
):
664
-
674
.
9.
Yang
F
,
Long
N
,
Anekpuritanang
T
, et al
.
Identification and prioritization of myeloid malignancy germline variants in a large cohort of adult patients with AML
.
Blood.
2022
;
139
(
8
):
1208
-
1221
.
10.
Polprasert
C
,
Schulze
I
,
Sekeres
MA
, et al
.
Inherited and somatic defects in DDX41 in myeloid neoplasms
.
Cancer Cell.
2015
;
27
(
5
):
658
-
670
.
11.
Cardoso
SR
,
Ryan
G
,
Walne
AJ
, et al
.
Germline heterozygous DDX41 variants in a subset of familial myelodysplasia and acute myeloid leukemia
.
Leukemia.
2016
;
30
(
10
):
2083
-
2086
.
12.
Alkhateeb
HB
,
Nanaa
A
,
Viswanatha
D
, et al
.
Genetic features and clinical outcomes of patients with isolated and comutated DDX41-mutated myeloid neoplasms
.
Blood Adv.
2021
;
6
(
2
):
528
-
532
.
13.
Chlon
TM
,
Stepanchick
E
,
Hershberger
CE
, et al
.
Germline DDX41 mutations cause ineffective hematopoiesis and myelodysplasia
.
Cell Stem Cell.
2021
;
28
(
11
):
1966
-
1981.e6
.
14.
Berger
G
,
van den Berg
E
,
Sikkema-Raddatz
B
, et al
.
Re-emergence of acute myeloid leukemia in donor cells following allogeneic transplantation in a family with a germline DDX41 mutation
.
Leukemia.
2017
;
31
(
2
):
520
-
522
.
15.
Kobayashi
S
,
Kobayashi
A
,
Osawa
Y
, et al
.
Donor cell leukemia arising from preleukemic clones with a novel germline DDX41 mutation after allogenic hematopoietic stem cell transplantation
.
Leukemia.
2017
;
31
(
4
):
1020
-
1022
.
16.
Bannon
SA
,
Routbort
MJ
,
Montalban-Bravo
G
, et al
.
Next-generation sequencing of DDX41 in myeloid neoplasms leads to increased detection of germline alterations
.
Front Oncol.
2021
;
10
:
582213
.
17.
Aldoss
I
,
Clark
M
,
Marcucci
G
,
Forman
SJ
.
Donor derived leukemia in allogeneic transplantation
.
Leuk Lymphoma.
2021
;
62
(
12
):
2823
-
2830
.
18.
Dietz
AC
,
DeFor
TE
,
Brunstein
CG
,
Wagner
JE
Jr
.
Donor-derived myelodysplastic syndrome and acute leukaemia after allogeneic haematopoietic stem cell transplantation: incidence, natural history and treatment response
.
Br J Haematol.
2014
;
166
(
2
):
209
-
212
.
19.
Lewinsohn
M
,
Brown
AL
,
Weinel
LM
, et al
.
Novel germ line DDX41 mutations define families with a lower age of MDS/AML onset and lymphoid malignancies
.
Blood.
2016
;
127
(
8
):
1017
-
1023
.
20.
Richards
S
,
Aziz
N
,
Bale
S
, et al;
ACMG Laboratory Quality Assurance Committee
.
Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology
.
Genet Med.
2015
;
17
(
5
):
405
-
424
.
21.
D’Agostino
M
,
Zaccaria
GM
,
Ziccheddu
B
, et al
.
Early relapse risk in patients with newly diagnosed multiple myeloma characterized by next-generation sequencing
.
Clin Cancer Res.
2020
;
26
(
18
):
4832
-
4841
.
22.
Shah
V
,
Johnson
DC
,
Sherborne
AL
, et al;
National Cancer Research Institute Haematology Clinical Studies Group
.
Subclonal TP53 copy number is associated with prognosis in multiple myeloma
.
Blood.
2018
;
132
(
23
):
2465
-
2469
.
23.
Corre
J
,
Cleynen
A
,
Robiou du Pont
S
, et al
.
Multiple myeloma clonal evolution in homogeneously treated patients
.
Leukemia.
2018
;
32
(
12
):
2636
-
2647
.
24.
Kortüm
KM
,
Mai
EK
,
Hanafiah
NH
, et al
.
Targeted sequencing of refractory myeloma reveals a high incidence of mutations in CRBN and Ras pathway genes
.
Blood.
2016
;
128
(
9
):
1226
-
1233
.
25.
Kelley
GA
,
Kelley
KS
.
Systematic reviews and meta-analysis in rheumatology: a gentle introduction for clinicians
.
Clin Rheumatol.
2019
;
38
(
8
):
2029
-
2038
.
26.
Vinches
M
,
Neven
A
,
Fenwarth
L
, et al
.
Clinical research in cancer palliative care: a metaresearch analysis
.
BMJ Support Palliat Care.
2020
;
10
(
2
):
249
-
258
.
27.
Bernard
E
,
Nannya
Y
,
Hasserjian
RP
, et al
.
Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes [corrections published in Nat Med. 2021;27:921]
.
Nat Med.
2020
;
26
(
10
):
1549
-
1556
.
28.
Qu
S
,
Li
B
,
Qin
T
, et al
.
Molecular and clinical features of myeloid neoplasms with somatic DDX41 mutations
.
Br J Haematol
.
2021
;
192
(
6
):
1006
-
1010
.
29.
Choi
E-J
,
Cho
Y-U
,
Hur
E-H
, et al
.
Unique ethnic features of DDX41 mutations in patients with idiopathic cytopenia of undetermined significance, myelodysplastic syndrome, or acute myeloid leukemia
.
Haematologica
.
2022
;
107
(
2
):
510
-
518
.
30.
Li
R
,
Sobreira
N
,
Witmer
PD
,
Pratz
KW
,
Braunstein
EM
.
Two novel germline DDX41 mutations in a family with inherited myelodysplasia/acute myeloid leukemia
.
Haematologica.
2016
;
101
(
6
):
e228
-
e231
.
31.
Cheah
JJC
,
Hahn
CN
,
Hiwase
DK
,
Scott
HS
,
Brown
AL
.
Myeloid neoplasms with germline DDX41 mutation
.
Int J Hematol.
2017
;
106
(
2
):
163
-
174
.
32.
Quesada
AE
,
Routbort
MJ
,
DiNardo
CD
, et al
.
DDX41 mutations in myeloid neoplasms are associated with male gender, TP53 mutations and high-risk disease
.
Am J Hematol.
2019
;
94
(
7
):
757
-
766
.
33.
Vairo
FPE
,
Ferrer
A
,
Cathcart-Rake
E
, et al
.
Novel germline missense DDX41 variant in a patient with an adult-onset myeloid neoplasm with excess blasts without dysplasia
.
Leuk Lymphoma.
2019
;
60
(
5
):
1337
-
1339
.
34.
Polprasert
C
,
Takeda
J
,
Niparuck
P
, et al
.
Novel DDX41 variants in Thai patients with myeloid neoplasms
.
Int J Hematol.
2020
;
111
(
2
):
241
-
246
.
35.
Bejar
R
,
Stevenson
K
,
Abdel-Wahab
O
, et al
.
Clinical effect of point mutations in myelodysplastic syndromes
.
N Engl J Med.
2011
;
364
(
26
):
2496
-
2506
.
36.
Méndez-Ferrer
S
,
García-Fernández
M
,
de Castillejo
CL
.
Convert and conquer: the strategy of chronic myelogenous leukemic cells
.
Cancer Cell.
2015
;
27
(
5
):
611
-
613
.
37.
Maciejewski
JP
,
Padgett
RA
,
Brown
AL
,
Müller-Tidow
C
.
DDX41-related myeloid neoplasia
.
Semin Hematol.
2017
;
54
(
2
):
94
-
97
.

Supplemental data

Sign in via your Institution