• Single-cell RNA sequencing and spatial transcriptomics reveal transcriptionally distinct hepatic macrophage populations in SCA mice.

  • Efficient clearance of VWF by macrophages or Kupffer cells in the liver is critical for the protective effect of ADAMTS13 in SCA mice.

Abstract

Although it is caused by a single-nucleotide mutation in the β-globin gene, sickle cell anemia (SCA) is a systemic disease with complex, incompletely elucidated pathologies. The mononuclear phagocyte system plays critical roles in SCA pathophysiology. However, how heterogeneous populations of hepatic macrophages contribute to SCA remains unclear. Using a combination of single-cell RNA sequencing and spatial transcriptomics via multiplexed error-robust fluorescence in situ hybridization, we identified distinct macrophage populations with diversified origins and biological functions in SCA mouse liver. We previously found that administering the von Willebrand factor (VWF)–cleaving protease ADAMTS13 alleviated vaso-occlusive episode in mice with SCA. Here, we discovered that the ADAMTS13-cleaved VWF was cleared from the circulation by a Clec4f+Marcohigh macrophage subset in a desialylation-dependent manner in the liver. In addition, sickle erythrocytes were phagocytized predominantly by Clec4f+Marcohigh macrophages. Depletion of macrophages not only abolished the protective effect of ADAMTS13 but exacerbated vaso-occlusive episode in mice with SCA. Furthermore, promoting macrophage-mediated VWF clearance reduced vaso-occlusion in SCA mice. Our study demonstrates that hepatic macrophages are important in the pathogenesis of SCA, and efficient clearance of VWF by hepatic macrophages is critical for the protective effect of ADAMTS13 in SCA mice.

1.
Rees
DC
,
Williams
TN
,
Gladwin
MT
.
Sickle-cell disease
.
Lancet
.
2010
;
376
(
9757
):
2018
-
2031
.
2.
Redinus
K
,
Baek
JH
,
Yalamanoglu
A
, et al
.
An Hb-mediated circulating macrophage contributing to pulmonary vascular remodeling in sickle cell disease
.
JCI Insight
.
2019
;
4
(
15
):
e127860
.
3.
Liu
Y
,
Jing
F
,
Yi
W
, et al
.
HO-1(hi) patrolling monocytes protect against vaso-occlusion in sickle cell disease
.
Blood
.
2018
;
131
(
14
):
1600
-
1610
.
4.
Sharma
R
,
Antypiuk
A
,
Vance
SZ
, et al
.
Macrophage metabolic rewiring improves heme-suppressed efferocytosis and tissue damage in sickle cell disease
.
Blood
.
2023
;
141
(
25
):
3091
-
3108
.
5.
Liu
Y
,
Zhong
H
,
Bao
W
, et al
.
Patrolling monocytes scavenge endothelial-adherent sickle RBCs: a novel mechanism of inhibition of vaso-occlusion in SCD
.
Blood
.
2019
;
134
(
7
):
579
-
590
.
6.
Liu
Y
,
Su
S
,
Shayo
S
, et al
.
Hemolysis dictates monocyte differentiation via two distinct pathways in sickle cell disease vaso-occlusion
.
J Clin Invest
.
2023
;
133
(
18
):
e172087
.
7.
Kaminski
TW
,
Katoch
O
,
Li
Z
, et al
.
Impaired hemoglobin clearance by sinusoidal endothelium promotes vaso-occlusion and liver injury in sickle cell disease
.
Haematologica
.
2023
.
8.
Ryter
SW
,
Alam
J
,
Choi
AM
.
Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications
.
Physiol Rev
.
2006
;
86
(
2
):
583
-
650
.
9.
MacParland
SA
,
Liu
JC
,
Ma
XZ
, et al
.
Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations
.
Nat Commun
.
2018
;
9
(
1
):
4383
.
10.
Gomez Perdiguero
E
,
Klapproth
K
,
Schulz
C
, et al
.
Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors
.
Nature
.
2015
;
518
(
7540
):
547
-
551
.
11.
Dixon
LJ
,
Barnes
M
,
Tang
H
,
Pritchard
MT
,
Nagy
LE
.
Kupffer cells in the liver
.
Compr Physiol
.
2013
;
3
(
2
):
785
-
797
.
12.
Kubes
P
,
Jenne
C
.
Immune responses in the liver
.
Annu Rev Immunol
.
2018
;
36
:
247
-
277
.
13.
Sakai
M
,
Troutman
TD
,
Seidman
JS
, et al
.
Liver-derived signals sequentially reprogram myeloid enhancers to initiate and maintain Kupffer cell identity
.
Immunity
.
2019
;
51
(
4
):
655
-
670.e8
.
14.
Epelman
S
,
Lavine
KJ
,
Randolph
GJ
.
Origin and functions of tissue macrophages
.
Immunity
.
2014
;
41
(
1
):
21
-
35
.
15.
Liu
Y
,
Pal
M
,
Bao
W
, et al
.
Type I interferon is induced by hemolysis and drives antibody-mediated erythrophagocytosis in sickle cell disease
.
Blood
.
2021
;
138
(
13
):
1162
-
1171
.
16.
Vinchi
F
,
Costa da Silva
M
,
Ingoglia
G
, et al
.
Hemopexin therapy reverts heme-induced proinflammatory phenotypic switching of macrophages in a mouse model of sickle cell disease
.
Blood
.
2016
;
127
(
4
):
473
-
486
.
17.
Wu
C
,
Lu
W
,
Zhang
Y
, et al
.
Inflammasome activation triggers blood clotting and host death through pyroptosis
.
Immunity
.
2019
;
50
(
6
):
1401
-
1411.e4
.
18.
Wang
J
,
Kubes
P
.
A reservoir of mature cavity macrophages that can rapidly invade visceral organs to affect tissue repair
.
Cell
.
2016
;
165
(
3
):
668
-
678
.
19.
Kremer Hovinga
JA
,
George
JN
.
Hereditary thrombotic thrombocytopenic purpura
.
N Engl J Med
.
2019
;
381
(
17
):
1653
-
1662
.
20.
Yee
A
,
Gildersleeve
RD
,
Gu
S
, et al
.
A von Willebrand factor fragment containing the D'D3 domains is sufficient to stabilize coagulation factor VIII in mice
.
Blood
.
2014
;
124
(
3
):
445
-
452
.
21.
Chen
J
,
Hobbs
WE
,
Le
J
,
Lenting
PJ
,
de Groot
PG
,
Lopez
JA
.
The rate of hemolysis in sickle cell disease correlates with the quantity of active von Willebrand factor in the plasma
.
Blood
.
2011
;
117
(
13
):
3680
-
3683
.
22.
van der Land
V
,
Peters
M
,
Biemond
BJ
,
Heijboer
H
,
Harteveld
CL
,
Fijnvandraat
K
.
Markers of endothelial dysfunction differ between subphenotypes in children with sickle cell disease
.
Thromb Res
.
2013
;
132
(
6
):
712
-
717
.
23.
Sins
JWR
,
Schimmel
M
,
Luken
BM
, et al
.
Dynamics of von Willebrand factor reactivity in sickle cell disease during vaso-occlusive crisis and steady state
.
J Thromb Haemost
.
2017
;
15
(
7
):
1392
-
1402
.
24.
Furlan
M
,
Robles
R
,
Lammle
B
.
Partial purification and characterization of a protease from human plasma cleaving von Willebrand factor to fragments produced by in vivo proteolysis
.
Blood
.
1996
;
87
(
10
):
4223
-
4234
.
25.
Tsai
HM
.
Physiologic cleavage of von Willebrand factor by a plasma protease is dependent on its conformation and requires calcium ion
.
Blood
.
1996
;
87
(
10
):
4235
-
4244
.
26.
Zheng
X
,
Majerus
EM
,
Sadler
JE
.
ADAMTS13 and TTP
.
Curr Opin Hematol
.
2002
;
9
(
5
):
389
-
394
.
27.
Shi
H
,
Shao
B
,
Gao
L
, et al
.
Endothelial VWF is critical for the pathogenesis of vaso-occlusive episode in a mouse model of sickle cell disease
.
Proc Natl Acad Sci U S A
.
2022
;
119
(
34
):
e2207592119
.
28.
Rossato
P
,
Glantschnig
H
,
Canneva
F
, et al
.
Treatment with recombinant ADAMTS13, alleviates hypoxia/reoxygenation-induced pathologies in a mouse model of human sickle cell disease
.
J Thromb Haemost
.
2023
;
21
(
2
):
269
-
275
.
29.
Rossato
P
,
Federti
E
,
Matte
A
, et al
.
Evidence of protective effects of recombinant ADAMTS13 in a humanized model of sickle cell disease
.
Haematologica
.
2022
;
107
(
11
):
2650
-
2660
.
30.
Vital
EF
,
Lam
WA
.
Hidden behind thromboinflammation: revealing the roles of von Willebrand factor in sickle cell disease pathophysiology
.
Curr Opin Hematol
.
2023
;
30
(
3
):
86
-
92
.
31.
Hidalgo
A
,
Chang
J
,
Jang
JE
,
Peired
AJ
,
Chiang
EY
,
Frenette
PS
.
Heterotypic interactions enabled by polarized neutrophil microdomains mediate thromboinflammatory injury
.
Nat Med
.
2009
;
15
(
4
):
384
-
391
.
32.
Vats
R
,
Kaminski
TW
,
Brzoska
T
, et al
.
Liver-to-lung microembolic NETs promote gasdermin D-dependent inflammatory lung injury in sickle cell disease
.
Blood
.
2022
;
140
(
9
):
1020
-
1037
.
33.
O'Sullivan
JM
,
Ward
S
,
Lavin
M
,
O'Donnell
JS
.
von Willebrand factor clearance - biological mechanisms and clinical significance
.
Br J Haematol
.
2018
;
183
(
2
):
185
-
195
.
34.
Swystun
LL
,
Lai
JD
,
Notley
C
, et al
.
The endothelial cell receptor stabilin-2 regulates VWF-FVIII complex half-life and immunogenicity
.
J Clin Invest
.
2018
;
128
(
9
):
4057
-
4073
.
35.
Ryan
TM
,
Ciavatta
DJ
,
Townes
TM
.
Knockout-transgenic mouse model of sickle cell disease
.
Science
.
1997
;
278
(
5339
):
873
-
876
.
36.
Li
Y
,
Fu
J
,
Ling
Y
, et al
.
Sialylation on O-glycans protects platelets from clearance by liver Kupffer cells
.
Proc Natl Acad Sci U S A
.
2017
;
114
(
31
):
8360
-
8365
.
37.
Chen
KH
,
Boettiger
AN
,
Moffitt
JR
,
Wang
S
,
Zhuang
X
.
RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells
.
Science
.
2015
;
348
(
6233
):
aaa6090
.
38.
Allen
WE
,
Blosser
TR
,
Sullivan
ZA
,
Dulac
C
,
Zhuang
X
.
Molecular and spatial signatures of mouse brain aging at single-cell resolution
.
Cell
.
2023
;
186
(
1
):
194
-
208.e18
.
39.
Rastegarlari
G
,
Pegon
JN
,
Casari
C
, et al
.
Macrophage LRP1 contributes to the clearance of von Willebrand factor
.
Blood
.
2012
;
119
(
9
):
2126
-
2134
.
40.
Ward
SE
,
O'Sullivan
JM
,
Drakeford
C
, et al
.
A novel role for the macrophage galactose-type lectin receptor in mediating von Willebrand factor clearance
.
Blood
.
2018
;
131
(
8
):
911
-
916
.
41.
Wohner
N
,
Muczynski
V
,
Mohamadi
A
, et al
.
Macrophage scavenger receptor SR-AI contributes to the clearance of von Willebrand factor
.
Haematologica
.
2018
;
103
(
4
):
728
-
737
.
42.
Pegon
JN
,
Kurdi
M
,
Casari
C
, et al
.
Factor VIII and von Willebrand factor are ligands for the carbohydrate-receptor Siglec-5
.
Haematologica
.
2012
;
97
(
12
):
1855
-
1863
.
43.
Grewal
PK
,
Uchiyama
S
,
Ditto
D
, et al
.
The Ashwell receptor mitigates the lethal coagulopathy of sepsis
.
Nat Med
.
2008
;
14
(
6
):
648
-
655
.
44.
Jacquel
A
,
Obba
S
,
Boyer
L
, et al
.
Autophagy is required for CSF-1-induced macrophagic differentiation and acquisition of phagocytic functions
.
Blood
.
2012
;
119
(
19
):
4527
-
4531
.
45.
Bonilla
DL
,
Bhattacharya
A
,
Sha
Y
, et al
.
Autophagy regulates phagocytosis by modulating the expression of scavenger receptors
.
Immunity
.
2013
;
39
(
3
):
537
-
547
.
46.
Jaynes
JM
,
Sable
R
,
Ronzetti
M
, et al
.
Mannose receptor (CD206) activation in tumor-associated macrophages enhances adaptive and innate antitumor immune responses
.
Sci Transl Med
.
2020
;
12
(
530
):
eaax6337
.
47.
Ward
SE
,
O'Sullivan
JM
,
Moran
AB
, et al
.
Sialylation on O-linked glycans protects von Willebrand factor from macrophage galactose lectin-mediated clearance
.
Haematologica
.
2022
;
107
(
3
):
668
-
679
.
48.
Ward
S
,
O'Sullivan
JM
,
O'Donnell
JS
.
von Willebrand factor sialylation-A critical regulator of biological function
.
J Thromb Haemost
.
2019
;
17
(
7
):
1018
-
1029
.
49.
Das
R
,
Ganapathy
S
,
Settle
M
,
Plow
EF
.
Plasminogen promotes macrophage phagocytosis in mice
.
Blood
.
2014
;
124
(
5
):
679
-
688
.
50.
Sugimoto
MA
,
Ribeiro
ALC
,
Costa
BRC
, et al
.
Plasmin and plasminogen induce macrophage reprogramming and regulate key steps of inflammation resolution via annexin A1
.
Blood
.
2017
;
129
(
21
):
2896
-
2907
.
51.
Maderna
P
,
Cottell
DC
,
Toivonen
T
, et al
.
FPR2/ALX receptor expression and internalization are critical for lipoxin A4 and annexin-derived peptide-stimulated phagocytosis
.
FASEB J
.
2010
;
24
(
11
):
4240
-
4249
.
52.
Reville
K
,
Crean
JK
,
Vivers
S
,
Dransfield
I
,
Godson
C
.
Lipoxin A4 redistributes myosin IIA and Cdc42 in macrophages: implications for phagocytosis of apoptotic leukocytes
.
J Immunol
.
2006
;
176
(
3
):
1878
-
1888
.
53.
Arredouani
M
,
Yang
Z
,
Ning
Y
, et al
.
The scavenger receptor MARCO is required for lung defense against pneumococcal pneumonia and inhaled particles
.
J Exp Med
.
2004
;
200
(
2
):
267
-
272
.
54.
Maler
MD
,
Nielsen
PJ
,
Stichling
N
, et al
.
Key role of the scavenger receptor MARCO in mediating adenovirus infection and subsequent innate responses of macrophages
.
mBio
.
2017
;
8
(
5
):
e01445-17
.
55.
Harvey
CJ
,
Thimmulappa
RK
,
Sethi
S
, et al
.
Targeting Nrf2 signaling improves bacterial clearance by alveolar macrophages in patients with COPD and in a mouse model
.
Sci Transl Med
.
2011
;
3
(
78
):
78ra32
.
56.
Pfefferlé
M
,
Ingoglia
G
,
Schaer
CA
, et al
.
Hemolysis transforms liver macrophages into antiinflammatory erythrophagocytes
.
J Clin Invest
.
2020
;
130
(
10
):
5576
-
5590
.
57.
Ataga
KI
,
Kutlar
A
,
Kanter
J
, et al
.
Crizanlizumab for the prevention of pain crises in sickle cell disease
.
N Engl J Med
.
2017
;
376
(
5
):
429
-
439
.
58.
Niihara
Y
,
Miller
ST
,
Kanter
J
, et al
.
A phase 3 trial of l-glutamine in sickle cell disease
.
N Engl J Med
.
2018
;
379
(
3
):
226
-
235
.
59.
Chaturvedi
S
,
DeBaun
MR
.
Evolution of sickle cell disease from a life-threatening disease of children to a chronic disease of adults: The last 40 years
.
Am J Hematol
.
2016
;
91
(
1
):
5
-
14
.
60.
Patwari
P
,
Nguyen
VA
,
Bhattacharya
I
,
Jain
N
.
Recombinant ADAMTS13 for patients with sickle cell disease: design of a phase 1 safety, tolerability, pharmacokinetics, and pharmacodynamics study
.
Blood
.
2021
;
138
(
suppl 1
):
3118
.
61.
Chaturvedi
S
,
DeBaun
MR
.
Altered VWF:ADAMTS13 homeostasis is a target for therapeutic intervention in sickle cell disease
.
Proc Natl Acad Sci U S A
.
2022
;
119
(
40
):
e2213079119
.
62.
Ellsworth
P
,
Sparkenbaugh
EM
.
Targeting the von Willebrand Factor-ADAMTS-13 axis in sickle cell disease
.
J Thromb Haemost
.
2023
;
21
(
1
):
2
-
6
.
63.
George
JN
.
Thrombotic thrombocytopenic purpura: from 1972 to 2022 and beyond
.
Semin Thromb Hemost
.
2022
;
48
(
8
):
926
-
936
.
64.
Moake
JL
,
Turner
NA
,
Stathopoulos
NA
,
Nolasco
LH
,
Hellums
JD
.
Involvement of large plasma von Willebrand factor (vWF) multimers and unusually large vWF forms derived from endothelial cells in shear stress-induced platelet aggregation
.
J Clin Invest
.
1986
;
78
(
6
):
1456
-
1461
.
65.
Federici
AB
,
Bader
R
,
Pagani
S
,
Colibretti
ML
,
De Marco
L
,
Mannucci
PM
.
Binding of von Willebrand factor to glycoproteins Ib and IIb/IIIa complex: affinity is related to multimeric size
.
Br J Haematol
.
1989
;
73
(
1
):
93
-
99
.
66.
Setty
BN
,
Kulkarni
S
,
Stuart
MJ
.
Role of erythrocyte phosphatidylserine in sickle red cell-endothelial adhesion
.
Blood
.
2002
;
99
(
5
):
1564
-
1571
.
67.
Smeets
MWJ
,
Mourik
MJ
,
Niessen
HWM
,
Hordijk
PL
.
Stasis promotes erythrocyte adhesion to von willebrand factor
.
Arterioscler Thromb Vasc Biol
.
2017
;
37
(
9
):
1618
-
1627
.
68.
Lemmerhirt
HL
,
Shavit
JA
,
Levy
GG
,
Cole
SM
,
Long
JC
,
Ginsburg
D
.
Enhanced VWF biosynthesis and elevated plasma VWF due to a natural variant in the murine Vwf gene
.
Blood
.
2006
;
108
(
9
):
3061
-
3067
.
69.
Ellies
LG
,
Ditto
D
,
Levy
GG
, et al
.
Sialyltransferase ST3Gal-IV operates as a dominant modifier of hemostasis by concealing asialoglycoprotein receptor ligands
.
Proc Natl Acad Sci U S A
.
2002
;
99
(
15
):
10042
-
10047
.
70.
Canis
K
,
McKinnon
TA
,
Nowak
A
, et al
.
Mapping the N-glycome of human von Willebrand factor
.
Biochem J
.
2012
;
447
(
2
):
217
-
228
.
71.
Chion
A
,
O'Sullivan
JM
,
Drakeford
C
, et al
.
N-linked glycans within the A2 domain of von Willebrand factor modulate macrophage-mediated clearance
.
Blood
.
2016
;
128
(
15
):
1959
-
1968
.
72.
Ansari
J
,
Senchenkova
EY
,
Vital
SA
, et al
.
Targeting the AnxA1/Fpr2/ALX pathway regulates neutrophil function, promoting thromboinflammation resolution in sickle cell disease
.
Blood
.
2021
;
137
(
11
):
1538
-
1549
.
73.
Brandenburg
LO
,
Konrad
M
,
Wruck
CJ
,
Koch
T
,
Lucius
R
,
Pufe
T
.
Functional and physical interactions between formyl-peptide-receptors and scavenger receptor MARCO and their involvement in amyloid beta 1-42-induced signal transduction in glial cells
.
J Neurochem
.
2010
;
113
(
3
):
749
-
760
.
74.
Braun
BJ
,
Slowik
A
,
Leib
SL
, et al
.
The formyl peptide receptor like-1 and scavenger receptor MARCO are involved in glial cell activation in bacterial meningitis
.
J Neuroinflammation
.
2011
;
8
(
1
):
11
.
You do not currently have access to this content.
Sign in via your Institution