• Antigens associated with persistent viral infections can mimic epitopes presented on hematopoietic progenitor cells.

  • Respective epitopes can drive aplastic anemia by T cell–mediated elimination of hematopoietic progenitor cells.

Abstract

Acquired aplastic anemia is a bone marrow failure syndrome characterized by hypocellular bone marrow and peripheral blood pancytopenia. Frequent clinical responses to calcineurin inhibition and antithymocyte globulin strongly suggest critical roles for hematopoietic stem/progenitor cell–reactive T-cell clones in disease pathophysiology; however, their exact contribution and antigen specificities remain unclear. We determined differentiation states and targets of dominant T-cell clones along with their potential to eliminate hematopoietic progenitor cells in the bone marrow of 15 patients with acquired aplastic anemia. Single-cell sequencing and immunophenotyping revealed oligoclonal expansion and effector differentiation of CD8+ T-cell compartments. We reexpressed 28 dominant T-cell receptors (TCRs) of 9 patients in reporter cell lines to determine reactivity with (1) in vitro–expanded CD34+ bone marrow, (2) CD34 bone marrow, or (3) peptide pools covering immunodominant epitopes of highly prevalent viruses. Besides 5 cytomegalovirus-reactive TCRs, we identified 3 TCRs that recognized antigen presented on hematopoietic progenitor cells. T cells transduced with these TCRs eliminated hematopoietic progenitor cells of the respective patients in vitro. One progenitor cell–reactive TCR (11A5) also recognized an epitope of the Epstein-Barr virus–derived latent membrane protein 1 (LMP1) presented on HLA-A∗02:01. We identified 2 LMP1-related mimotopes within the human proteome as activating targets of TCR 11A5, providing proof of concept that molecular mimicry of viral and self-epitopes can drive T cell–mediated elimination of hematopoietic progenitor cells in aplastic anemia.

1.
Young
NS
.
Aplastic anemia
.
N Engl J Med
.
2018
;
379
(
17
):
1643
-
1656
.
2.
Tometten
M
,
Kirschner
M
,
Meyer
R
, et al
.
Identification of adult patients with classical and/or cryptic dyskeratosis congenita (DKC) by telomere lenght screening using age-modified criteria
.
Hemasphere
.
2023
;
7
(
5
):
e874
.
3.
Vieri
M
,
Brummendorf
TH
,
Beier
F
.
Treatment of telomeropathies
.
Best Pract Res Clin Haematol
.
2021
;
34
(
2
):
101282
.
4.
Rosenfeld
S
,
Follmann
D
,
Nunez
O
,
Young
NS
.
Antithymocyte globulin and cyclosporine for severe aplastic anemia: association between hematologic response and long-term outcome
.
JAMA
.
2003
;
289
(
9
):
1130
-
1135
.
5.
Risitano
AM
.
(Auto-)immune signature in aplastic anemia
.
Haematologica
.
2018
;
103
(
5
):
747
-
749
.
6.
Zheng
M
,
Liu
C
,
Fu
R
, et al
.
Abnormal immunomodulatory ability on memory T cells in humans with severe aplastic anemia
.
Int J Clin Exp Pathol
.
2015
;
8
(
4
):
3659
-
3669
.
7.
Zhu
C
,
Lian
Y
,
Wang
C
, et al
.
Single-cell transcriptomics dissects hematopoietic cell destruction and T-cell engagement in aplastic anemia
.
Blood
.
2021
;
138
(
1
):
23
-
33
.
8.
Peffault de Latour
R
,
Kulasekararaj
A
,
Iacobelli
S
, et al
.
Eltrombopag added to immunosuppression in severe aplastic anemia
.
N Engl J Med
.
2022
;
386
(
1
):
11
-
23
.
9.
Hosokawa
K
,
Muranski
P
,
Feng
X
, et al
.
Memory stem T cells in autoimmune disease: high frequency of circulating CD8+ memory stem cells in acquired aplastic anemia
.
J Immunol
.
2016
;
196
(
4
):
1568
-
1578
.
10.
Solomou
EE
,
Keyvanfar
K
,
Young
NS
.
T-bet, a Th1 transcription factor, is up-regulated in T cells from patients with aplastic anemia
.
Blood
.
2006
;
107
(
10
):
3983
-
3991
.
11.
Giudice
V
,
Feng
X
,
Lin
Z
, et al
.
Deep sequencing and flow cytometric characterization of expanded effector memory CD8(+)CD57(+) T cells frequently reveals T-cell receptor Vbeta oligoclonality and CDR3 homology in acquired aplastic anemia
.
Haematologica
.
2018
;
103
(
5
):
759
-
769
.
12.
Zaimoku
Y
,
Patel
BA
,
Adams
SD
, et al
.
HLA associations, somatic loss of HLA expression, and clinical outcomes in immune aplastic anemia
.
Blood
.
2021
;
138
(
26
):
2799
-
2809
.
13.
Deng
XZ
,
Du
M
,
Peng
J
, et al
.
Associations between the HLA-A/B/DRB1 polymorphisms and aplastic anemia: evidence from 17 case-control studies
.
Hematology
.
2018
;
23
(
3
):
154
-
162
.
14.
Pagliuca
S
,
Gurnari
C
,
Awada
H
, et al
.
The similarity of class II HLA genotypes defines patterns of autoreactivity in idiopathic bone marrow failure disorders
.
Blood
.
2021
;
138
(
26
):
2781
-
2798
.
15.
Chang
HD
,
Radbruch
A
.
Maintenance of quiescent immune memory in the bone marrow
.
Eur J Immunol
.
2021
;
51
(
7
):
1592
-
1601
.
16.
Hislop
AD
,
Annels
NE
,
Gudgeon
NH
,
Leese
AM
,
Rickinson
AB
.
Epitope-specific evolution of human CD8(+) T cell responses from primary to persistent phases of Epstein-Barr virus infection
.
J Exp Med
.
2002
;
195
(
7
):
893
-
905
.
17.
Hislop
AD
,
Taylor
GS
,
Sauce
D
,
Rickinson
AB
.
Cellular responses to viral infection in humans: lessons from Epstein-Barr virus
.
Annu Rev Immunol
.
2007
;
25
:
587
-
617
.
18.
Lanz
TV
,
Brewer
RC
,
Ho
PP
, et al
.
Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM
.
Nature
.
2022
;
603
(
7900
):
321
-
327
.
19.
Schneider-Hohendorf
T
,
Gerdes
LA
,
Pignolet
B
, et al
.
Broader Epstein-Barr virus-specific T cell receptor repertoire in patients with multiple sclerosis
.
J Exp Med
.
2022
;
219
(
11
):
e20220650
.
20.
Siewert
K
,
Malotka
J
,
Kawakami
N
,
Wekerle
H
,
Hohlfeld
R
,
Dornmair
K
.
Unbiased identification of target antigens of CD8+ T cells with combinatorial libraries coding for short peptides
.
Nat Med
.
2012
;
18
(
5
):
824
-
828
.
21.
Welters
C
,
Lammoglia Cobo
MF
,
Stein
CA
, et al
.
Immune phenotypes and target antigens of clonally expanded bone marrow T cells in treatment-naive multiple myeloma
.
Cancer Immunol Res
.
2022
;
10
(
11
):
1407
-
1419
.
22.
Ballhausen
A
,
Ben Hamza
A
,
Welters
C
, et al
.
Immune phenotypes and checkpoint molecule expression of clonally expanded lymph node-infiltrating T cells in classical Hodgkin lymphoma
.
Cancer Immunol Immunother
.
2023
;
72
(
2
):
515
-
521
.
23.
Penter
L
,
Dietze
K
,
Bullinger
L
,
Westermann
J
,
Rahn
HP
,
Hansmann
L
.
FACS single cell index sorting is highly reliable and determines immune phenotypes of clonally expanded T cells
.
Eur J Immunol
.
2018
;
48
(
7
):
1248
-
1250
.
24.
Penter
L
,
Dietze
K
,
Ritter
J
, et al
.
Localization-associated immune phenotypes of clonally expanded tumor-infiltrating T cells and distribution of their target antigens in rectal cancer
.
Oncoimmunology
.
2019
;
8
(
6
):
e1586409
.
25.
Han
A
,
Glanville
J
,
Hansmann
L
,
Davis
MM
.
Linking T-cell receptor sequence to functional phenotype at the single-cell level
.
Nat Biotechnol
.
2014
;
32
(
7
):
684
-
692
.
26.
Engels
B
,
Cam
H
,
Schuler
T
, et al
.
Retroviral vectors for high-level transgene expression in T lymphocytes
.
Hum Gene Ther
.
2003
;
14
(
12
):
1155
-
1168
.
27.
Lammoglia Cobo
MF
,
Welters
C
,
Rosenberger
L
, et al
.
Rapid single-cell identification of Epstein-Barr virus-specific T-cell receptors for cellular therapy
.
Cytotherapy
.
2022
;
24
(
8
):
818
-
826
.
28.
Welters
C
,
Welters
ML
,
Stadler
S
, et al
.
HLA-C∗04:09N is expressed at the cell surface and triggers peptide-specific T-cell activation
.
Haematologica
.
Published online 28 September 2023
.
29.
Bruggemann
M
,
Kotrova
M
,
Knecht
H
, et al
.
Standardized next-generation sequencing of immunoglobulin and T-cell receptor gene recombinations for MRD marker identification in acute lymphoblastic leukaemia; a EuroClonality-NGS validation study
.
Leukemia
.
2019
;
33
(
9
):
2241
-
2253
.
30.
Bystry
V
,
Reigl
T
,
Krejci
A
, et al
.
ARResT/Interrogate: an interactive immunoprofiler for IG/TR NGS data
.
Bioinformatics
.
2017
;
33
(
3
):
435
-
437
.
31.
Giudicelli
V
,
Brochet
X
,
Lefranc
MP
.
IMGT/V-QUEST: IMGT standardized analysis of the immunoglobulin (IG) and T cell receptor (TR) nucleotide sequences
.
Cold Spring Harb Protoc
.
2011
;
2011
(
6
):
695
-
715
.
32.
R Core Team
.
R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing
. Accessed in 2021.. https://www.R-project.org.
33.
Henson
SM
,
Riddell
NE
,
Akbar
AN
.
Properties of end-stage human T cells defined by CD45RA re-expression
.
Curr Opin Immunol
.
2012
;
24
(
4
):
476
-
481
.
34.
Moosmann
A
,
Khan
N
,
Cobbold
M
, et al
.
B cells immortalized by a mini-Epstein-Barr virus encoding a foreign antigen efficiently reactivate specific cytotoxic T cells
.
Blood
.
2002
;
100
(
5
):
1755
-
1764
.
35.
Hansmann
L
,
Han
A
,
Penter
L
,
Liedtke
M
,
Davis
MM
.
Clonal expansion and interrelatedness of distinct B-lineage compartments in multiple myeloma bone marrow
.
Cancer Immunol Res
.
2017
;
5
(
9
):
744
-
754
.
36.
Graham
N
,
Eisenhauer
P
,
Diehl
SA
, et al
.
Rapid induction and maintenance of virus-specific CD8(+) T(EMRA) and CD4(+) T(EM) cells following protective vaccination against dengue virus challenge in humans
.
Front Immunol
.
2020
;
11
:
479
.
37.
Salumets
A
,
Tserel
L
,
Rumm
AP
, et al
.
Epigenetic quantification of immunosenescent CD8(+) TEMRA cells in human blood
.
Aging Cell
.
2022
;
21
(
5
):
e13607
.
38.
Glanville
J
,
Huang
H
,
Nau
A
, et al
.
Identifying specificity groups in the T cell receptor repertoire
.
Nature
.
2017
;
547
(
7661
):
94
-
98
.
39.
Huang
H
,
Wang
C
,
Rubelt
F
,
Scriba
TJ
,
Davis
MM
.
Analyzing the Mycobacterium tuberculosis immune response by T-cell receptor clustering with GLIPH2 and genome-wide antigen screening
.
Nat Biotechnol
.
2020
;
38
(
10
):
1194
-
1202
.
40.
Scheinberg
P
,
Fischer
SH
,
Li
L
, et al
.
Distinct EBV and CMV reactivation patterns following antibody-based immunosuppressive regimens in patients with severe aplastic anemia
.
Blood
.
2007
;
109
(
8
):
3219
-
3224
.
41.
Bozhilov
YK
,
Hsu
I
,
Brown
EJ
,
Wilkinson
AC
.
In vitro human haematopoietic stem cell expansion and differentiation
.
Cells
.
2023
;
12
(
6
):
896
.
42.
Sauvageau
G
,
Iscove
NN
,
Humphries
RK
.
In vitro and in vivo expansion of hematopoietic stem cells
.
Oncogene
.
2004
;
23
(
43
):
7223
-
7232
.
43.
Boitano
AE
,
Wang
J
,
Romeo
R
, et al
.
Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells
.
Science
.
2010
;
329
(
5997
):
1345
-
1348
.
44.
Fares
I
,
Chagraoui
J
,
Gareau
Y
, et al
.
Cord blood expansion. Pyrimidoindole derivatives are agonists of human hematopoietic stem cell self-renewal
.
Science
.
2014
;
345
(
6203
):
1509
-
1512
.
45.
Singh
J
,
Chen
ELY
,
Xing
Y
,
Stefanski
HE
,
Blazar
BR
,
Zuniga-Pflucker
JC
.
Generation and function of progenitor T cells from StemRegenin-1-expanded CD34+ human hematopoietic progenitor cells
.
Blood Adv
.
2019
;
3
(
20
):
2934
-
2948
.
46.
Walenda
T
,
Bokermann
G
,
Ventura Ferreira
MS
, et al
.
Synergistic effects of growth factors and mesenchymal stromal cells for expansion of hematopoietic stem and progenitor cells
.
Exp Hematol
.
2011
;
39
(
6
):
617
-
628
.
47.
Risitano
AM
,
Maciejewski
JP
,
Green
S
,
Plasilova
M
,
Zeng
W
,
Young
NS
.
In-vivo dominant immune responses in aplastic anaemia: molecular tracking of putatively pathogenetic T-cell clones by TCR beta-CDR3 sequencing
.
Lancet
.
2004
;
364
(
9431
):
355
-
364
.
48.
Olson
TS
,
Frost
BF
,
Duke
JL
, et al
.
Pathogenicity and impact of HLA class I alleles in aplastic anemia patients of different ethnicities
.
JCI Insight
.
2022
;
7
(
22
):
e163040
.
49.
Uhlen
M
,
Fagerberg
L
,
Hallstrom
BM
, et al
.
Proteomics. Tissue-based map of the human proteome
.
Science
.
2015
;
347
(
6220
):
1260419
.
50.
Grishaber
JE
,
McClain
KL
,
Mahoney
DH
,
Fernbach
DJ
.
Successful outcome of severe aplastic anemia following Epstein-Barr virus infection
.
Am J Hematol
.
1988
;
28
(
4
):
273
-
275
.
51.
Inoue
H
,
Shinohara
K
,
Nomiyama
J
,
Oeda
E
.
Fatal aplastic anemia caused by Epstein-Barr virus infection after autologous bone marrow transplantation for non-Hodgkin malignant lymphoma
.
Intern Med
.
1994
;
33
(
5
):
303
-
307
.
52.
Zhang
WJ
,
Wu
LQ
,
Wang
J
,
Lin
SY
,
Wang
B
.
Epstein-Barr-virus-associated hepatitis with aplastic anemia: a case report
.
World J Clin Cases
.
2022
;
10
(
23
):
8242
-
8248
.
53.
Baranski
B
,
Armstrong
G
,
Truman
JT
,
Quinnan
GV
,
Straus
SE
,
Young
NS
.
Epstein-Barr virus in the bone marrow of patients with aplastic anemia
.
Ann Intern Med
.
1988
;
109
(
9
):
695
-
704
.
54.
Shadduck
RK
,
Winkelstein
A
,
Zeigler
Z
, et al
.
Aplastic anemia following infectious mononucleosis: possible immune etiology
.
Exp Hematol
.
1979
;
7
(
5
):
264
-
271
.
55.
Simmons
P
,
Kaushansky
K
,
Torok-Storb
B
.
Mechanisms of cytomegalovirus-mediated myelosuppression: perturbation of stromal cell function versus direct infection of myeloid cells
.
Proc Natl Acad Sci U S A
.
1990
;
87
(
4
):
1386
-
1390
.
56.
Sakurai
M
,
Kogure
Y
,
Mizuno
K
,
Matsuki
E
,
Kataoka
K
.
Long-term reduction in the incidence of aplastic anemia and immune thrombocytopenia during the COVID-19 pandemic
.
Haematologica
.
2023
;
108
(
9
):
2546
-
2550
.
You do not currently have access to this content.
Sign in via your Institution