• Different from “7 + 3” combination, CPX-351 prevents mucosal damage, dysbiosis, and morbidity in intestinal inflammation.

  • CPX-351 protects via the aryl hydrocarbon receptor–IL-22-IL-10 host pathway and the production of immunomodulatory metabolites by anaerobes.

Abstract

CPX-351, a liposomal combination of cytarabine plus daunorubicin, has been approved for the treatment of adults with newly diagnosed, therapy-related acute myeloid leukemia (AML) or AML with myelodysplasia-related changes, because it improves survival and outcome of patients who received hematopoietic stem cell transplant compared with the continuous infusion of cytarabine plus daunorubicin (referred to as “7 + 3” combination). Because gut dysbiosis occurring in patients with AML during induction chemotherapy heavily affects the subsequent phases of therapy, we have assessed whether the superior activity of CPX-351 vs “7 + 3” combination in the real-life setting implicates an action on and by the intestinal microbiota. To this purpose, we have evaluated the impact of CPX-351 and “7 + 3” combination on mucosal barrier function, gut microbial composition and function, and antifungal colonization resistance in preclinical models of intestinal damage in vitro and in vivo and fecal microbiota transplantation. We found that CPX-351, at variance with “7 + 3” combination, protected from gut dysbiosis, mucosal damage, and gut morbidity while increasing antifungal resistance. Mechanistically, the protective effect of CPX-351 occurred through pathways involving both the host and the intestinal microbiota, namely via the activation of the aryl hydrocarbon receptor–interleukin-22 (IL-22)–IL-10 host pathway and the production of immunomodulatory metabolites by anaerobes. This study reveals how the gut microbiota may contribute to the good safety profile, with a low infection-related mortality, of CPX-351 and highlights how a better understanding of the host-microbiota dialogue may contribute to pave the way for precision medicine in AML.

1.
Lim
WS
,
Tardi
PG
,
Dos Santos
N
, et al
.
Leukemia-selective uptake and cytotoxicity of CPX-351, a synergistic fixed-ratio cytarabine:daunorubicin formulation, in bone marrow xenografts
.
Leuk Res
.
2010
;
34
(
9
):
1214
-
1223
.
2.
Lancet
JE
,
Uy
GL
,
Cortes
JE
, et al
.
CPX-351 (cytarabine and daunorubicin) liposome for injection versus conventional cytarabine plus daunorubicin in older patients with newly diagnosed secondary acute myeloid leukemia
.
J Clin Oncol
.
2018
;
36
(
26
):
2684
-
2692
.
3.
Tzogani
K
,
Penttila
K
,
Lapvetelainen
T
, et al
.
EMA review of daunorubicin and cytarabine encapsulated in liposomes (Vyxeos, CPX-351) for the treatment of adults with newly diagnosed, therapy-related acute myeloid leukemia or acute myeloid leukemia with myelodysplasia-related changes
.
Oncologist
.
2020
;
25
(
9
):
e1414
-
e1420
.
4.
Przespolewski
A
,
Goldberg
AD
,
Talati
C
, et al
.
Safety and efficacy of CPX-351 in younger patients (<60 years old) with secondary acute myeloid leukemia
.
Blood
.
2023
;
141
(
12
):
1489
-
1493
.
5.
Chiche
E
,
Rahme
R
,
Bertoli
S
, et al
.
Real-life experience with CPX-351 and impact on the outcome of high-risk AML patients: a multicentric French cohort
.
Blood Adv
.
2021
;
5
(
1
):
176
-
184
.
6.
Guolo
F
,
Fianchi
L
,
Minetto
P
, et al
.
CPX-351 treatment in secondary acute myeloblastic leukemia is effective and improves the feasibility of allogeneic stem cell transplantation: results of the Italian compassionate use program
.
Blood Cancer J
.
2020
;
10
(
10
):
96
.
7.
Ting
NL
,
Lau
HC
,
Yu
J
.
Cancer pharmacomicrobiomics: targeting microbiota to optimise cancer therapy outcomes
.
Gut
.
2022
;
71
(
7
):
1412
-
1425
.
8.
Alexander
JL
,
Wilson
ID
,
Teare
J
,
Marchesi
JR
,
Nicholson
JK
,
Kinross
JM
.
Gut microbiota modulation of chemotherapy efficacy and toxicity
.
Nat Rev Gastroenterol Hepatol
.
2017
;
14
(
6
):
356
-
365
.
9.
Cheng
WY
,
Wu
CY
,
Yu
J
.
The role of gut microbiota in cancer treatment: friend or foe?
.
Gut
.
2020
;
69
(
10
):
1867
-
1876
.
10.
Panebianco
C
,
Andriulli
A
,
Pazienza
V
.
Pharmacomicrobiomics: exploiting the drug-microbiota interactions in anticancer therapies
.
Microbiome
.
2018
;
6
(
1
):
92
.
11.
Rashidi
A
,
Ebadi
M
,
Rehman
TU
, et al
.
Loss of microbiota-derived protective metabolites after neutropenic fever
.
Sci Rep
.
2022
;
12
(
1
):
6244
.
12.
Galloway-Pena
JR
,
Shi
Y
,
Peterson
CB
, et al
.
Gut microbiome signatures are predictive of infectious risk following induction therapy for acute myeloid leukemia
.
Clin Infect Dis
.
2020
;
71
(
1
):
63
-
71
.
13.
Rashidi
A
,
Ebadi
M
,
Rehman
TU
, et al
.
Lasting shift in the gut microbiota in patients with acute myeloid leukemia
.
Blood Adv
.
2022
;
6
(
11
):
3451
-
3457
.
14.
Rashidi
A
,
Kaiser
T
,
Shields-Cutler
R
, et al
.
Dysbiosis patterns during re-induction/salvage versus induction chemotherapy for acute leukemia
.
Sci Rep
.
2019
;
9
(
1
):
6083
.
15.
Rashidi
A
,
Kaiser
T
,
Graiziger
C
, et al
.
Specific gut microbiota changes heralding bloodstream infection and neutropenic fever during intensive chemotherapy
.
Leukemia
.
2020
;
34
(
1
):
312
-
316
.
16.
Khuat
LT
,
Dave
M
,
Murphy
WJ
.
The emerging roles of the gut microbiome in allogeneic hematopoietic stem cell transplantation
.
Gut Microbes
.
2021
;
13
(
1
):
1966262
.
17.
Zeng
X
,
Li
X
,
Li
X
, et al
.
Fecal microbiota transplantation from young mice rejuvenates aged hematopoietic stem cells by suppressing inflammation
.
Blood
.
2023
;
141
(
14
):
1691
-
1707
.
18.
Peled
JU
,
Gomes
ALC
,
Devlin
SM
, et al
.
Microbiota as predictor of mortality in allogeneic hematopoietic-cell transplantation
.
N Engl J Med
.
2020
;
382
(
9
):
822
-
834
.
19.
Vincelette
ND
,
Ding
H
,
Huehls
AM
, et al
.
Effect of CHK1 inhibition on CPX-351 cytotoxicity in vitro and ex vivo
.
Sci Rep
.
2019
;
9
(
1
):
3617
.
20.
Renga
G
,
Nunzi
E
,
Pariano
M
, et al
.
Optimizing therapeutic outcomes of immune checkpoint blockade by a microbial tryptophan metabolite
.
J Immunother Cancer
.
2022
;
10
(
3
):
e003725
.
21.
Hueso
T
,
Ekpe
K
,
Mayeur
C
, et al
.
Impact and consequences of intensive chemotherapy on intestinal barrier and microbiota in acute myeloid leukemia: the role of mucosal strengthening
.
Gut Microbes
.
2020
;
12
(
1
):
1800897
.
22.
Wunderlich
M
,
Mizukawa
B
,
Chou
FS
, et al
.
AML cells are differentially sensitive to chemotherapy treatment in a human xenograft model
.
Blood
.
2013
;
121
(
12
):
e90
-
97
.
23.
Claassen
V
. Neglected factors in pharmacology and neuroscience research : biopharmaceutics, animal characteristics, maintenance, testing conditions.
Elsevier
;
1994
.
24.
Rothhammer
V
,
Quintana
FJ
.
The aryl hydrocarbon receptor: an environmental sensor integrating immune responses in health and disease
.
Nat Rev Immunol
.
2019
;
19
(
3
):
184
-
197
.
25.
Stockinger
B
,
Shah
K
,
Wincent
E
.
AHR in the intestinal microenvironment: safeguarding barrier function
.
Nat Rev Gastroenterol Hepatol
.
2021
;
18
(
8
):
559
-
570
.
26.
Yu
M
,
Wang
Q
,
Ma
Y
, et al
.
Aryl hydrocarbon receptor activation modulates intestinal epithelial barrier function by maintaining tight junction integrity
.
Int J Biol Sci
.
2018
;
14
(
1
):
69
-
77
.
27.
Sonnenberg
GF
,
Fouser
LA
,
Artis
D
.
Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22
.
Nat Immunol
.
2011
;
12
(
5
):
383
-
390
.
28.
Nguyen
HD
,
Aljamaei
HM
,
Stadnyk
AW
.
The production and function of endogenous interleukin-10 in intestinal epithelial cells and gut homeostasis
.
Cell Mol Gastroenterol Hepatol
.
2021
;
12
(
4
):
1343
-
1352
.
29.
Hasani
M
,
Sani
NA
,
Khodabakhshi
B
,
Arabi
MS
,
Mohammadi
S
,
Yazdani
Y
.
Encapsulation of Leflunomide (LFD) in a novel niosomal formulation facilitated its delivery to THP-1 monocytic cells and enhanced Aryl hydrocarbon receptor (AhR) nuclear translocation and activation
.
Daru
.
2019
;
27
(
2
):
635
-
644
.
30.
Dicko
A
,
Kwak
S
,
Frazier
AA
,
Mayer
LD
,
Liboiron
BD
.
Biophysical characterization of a liposomal formulation of cytarabine and daunorubicin
.
Int J Pharm
.
2010
;
391
(
1-2
):
248
-
259
.
31.
Puccetti
M
,
Pariano
M
,
Borghi
M
, et al
.
Enteric formulated indole-3-carboxaldehyde targets the aryl hydrocarbon receptor for protection in a murine model of metabolic syndrome
.
Int J Pharm
.
2021
;
602
:
120610
.
32.
Dong
F
,
Perdew
GH
.
The aryl hydrocarbon receptor as a mediator of host-microbiota interplay
.
Gut Microbes
.
2020
;
12
(
1
):
1859812
.
33.
Mar
JS
,
Ota
N
,
Pokorzynski
ND
, et al
.
IL-22 alters gut microbiota composition and function to increase aryl hydrocarbon receptor activity in mice and humans
.
Microbiome
.
2023
;
11
(
1
):
47
.
34.
Sturgill
G
,
Rather
PN
.
Evidence that putrescine acts as an extracellular signal required for swarming in Proteus mirabilis
.
Mol Microbiol
.
2004
;
51
(
2
):
437
-
446
.
35.
Garai
P
,
Chandra
K
,
Chakravortty
D
.
Bacterial peptide transporters: messengers of nutrition to virulence
.
Virulence
.
2017
;
8
(
3
):
297
-
309
.
36.
Coburn
B
,
Sekirov
I
,
Finlay
BB
.
Type III secretion systems and disease
.
Clin Microbiol Rev
.
2007
;
20
(
4
):
535
-
549
.
37.
Flemming
HC
,
Wingender
J
.
The biofilm matrix
.
Nat Rev Microbiol
.
2010
;
8
(
9
):
623
-
633
.
38.
Menezes-Garcia
Z
,
Kumar
A
,
Zhu
W
,
Winter
SE
,
Sperandio
V
.
l-Arginine sensing regulates virulence gene expression and disease progression in enteric pathogens
.
Proc Natl Acad Sci U S A
.
2020
;
117
(
22
):
12387
-
12393
.
39.
Rowley
CA
,
Kendall
MM
.
To B12 or not to B12: Five questions on the role of cobalamin in host-microbial interactions
.
PLoS Pathog
.
2019
;
15
(
1
):
e1007479
.
40.
Pereira
CS
,
Thompson
JA
,
Xavier
KB
.
AI-2-mediated signalling in bacteria
.
FEMS Microbiol Rev
.
2013
;
37
(
2
):
156
-
181
.
41.
Feehily
C
,
Karatzas
KA
.
Role of glutamate metabolism in bacterial responses towards acid and other stresses
.
J Appl Microbiol
.
2013
;
114
(
1
):
11
-
24
.
42.
Saier
MH
.
The bacterial phosphotransferase system: new frontiers 50 years after its discovery
.
J Mol Microbiol Biotechnol
.
2015
;
25
(
2-3
):
73
-
78
.
43.
Neganova
M
,
Semakov
A
,
Aleksandrova
Y
, et al
.
N-alkylation of anthracycline antibiotics by natural sesquiterpene lactones as a way to obtain antitumor agents with reduced side effects
.
Biomedicines
.
2021
;
9
(
5
):
547
.
44.
Choi
K
,
Jeon
BS
,
Kim
BC
,
Oh
MK
,
Um
Y
,
Sang
BI
.
In situ biphasic extractive fermentation for hexanoic acid production from sucrose by Megasphaera elsdenii NCIMB 702410
.
Appl Biochem Biotechnol
.
2013
;
171
(
5
):
1094
-
1107
.
45.
Rios-Covian
D
,
Gonzalez
S
,
Nogacka
AM
, et al
.
An overview on fecal branched short-chain fatty acids along human life and as related with body mass index: associated dietary and anthropometric factors
.
Front Microbiol
.
2020
;
11
:
973
.
46.
Zelante
T
,
Iannitti
RG
,
Cunha
C
, et al
.
Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22
.
Immunity
.
2013
;
39
(
2
):
372
-
385
.
47.
Jiang
X
,
Lu
N
,
Zhao
H
,
Yuan
H
,
Xia
D
,
Lei
H
.
The microbiome-metabolome response in the colon of piglets under the status of weaning stress
.
Front Microbiol
.
2020
;
11
:
2055
.
48.
Abdugheni
R
,
Wang
W-Z
,
Wang
Y-J
, et al
.
Metabolite profiling of human-originated Lachnospiraceae at the strain level
.
Imeta
.
2022
;
1
(
4
):
e58
.
49.
Sasaki-Imamura
T
,
Yoshida
Y
,
Suwabe
K
,
Yoshimura
F
,
Kato
H
.
Molecular basis of indole production catalyzed by tryptophanase in the genus Prevotella
.
FEMS Microbiol Lett
.
2011
;
322
(
1
):
51
-
59
.
50.
van de Wouw
M
,
Walsh
CJ
,
Vigano
GMD
, et al
.
Kefir ameliorates specific microbiota-gut-brain axis impairments in a mouse model relevant to autism spectrum disorder
.
Brain Behav Immun
.
2021
;
97
:
119
-
134
.
51.
Takahashi
M
,
Inoue
S
,
Hayama
K
,
Ninomiya
K
,
Abe
S
.
[Inhibition of Candida mycelia growth by a medium chain fatty acids, capric acid in vitro and its therapeutic efficacy in murine oral candidiasis]
.
Med Mycol J
.
2012
;
53
(
4
):
255
-
261
.
52.
Rizzatti
G
,
Lopetuso
LR
,
Gibiino
G
,
Binda
C
,
Gasbarrini
A
.
Proteobacteria: a common factor in human diseases
.
Biomed Res Int
.
2017
;
2017
:
9351507
.
53.
Rashidi
A
,
Weisdorf
DJ
.
Microbiota-based approaches to mitigate infectious complications of intensive chemotherapy in patients with acute leukemia
.
Transl Res
.
2020
;
220
:
167
-
181
.
54.
Shao
J
,
Li
Z
,
Gao
Y
, et al
.
Construction of a "bacteria-metabolites" co-expression network to clarify the anti-ulcerative colitis effect of flavonoids of sophora flavescens aiton by regulating the "host-microbe" interaction
.
Front Pharmacol
.
2021
;
12
:
710052
.
55.
Shi
Y
,
Zou
Y
,
Xiong
Y
, et al
.
Host Gasdermin D restrains systemic endotoxemia by capturing Proteobacteria in the colon of high-fat diet-feeding mice
.
Gut Microbes
.
2021
;
13
(
1
):
1946369
.
56.
Figliuolo
VR
,
Dos Santos
LM
,
Abalo
A
, et al
.
Sulfate-reducing bacteria stimulate gut immune responses and contribute to inflammation in experimental colitis
.
Life Sci
.
2017
;
189
:
29
-
38
.
57.
Sarkar
A
,
Mandal
S
.
Bifidobacteria-Insight into clinical outcomes and mechanisms of its probiotic action
.
Microbiol Res
.
2016
;
192
:
159
-
171
.
58.
Precup
G
,
Vodnar
DC
.
Gut Prevotella as a possible biomarker of diet and its eubiotic versus dysbiotic roles: a comprehensive literature review
.
Br J Nutr
.
2019
;
122
(
2
):
131
-
140
.
59.
Mazmanian
SK
,
Round
JL
,
Kasper
DL
.
A microbial symbiosis factor prevents intestinal inflammatory disease
.
Nature
.
2008
;
453
(
7195
):
620
-
625
.
60.
Zgur-Bertok
D
.
DNA damage repair and bacterial pathogens
.
PLoS Pathog
.
2013
;
9
(
11
):
e1003711
.
61.
Lee
SI
,
Kang
KS
.
Function of capric acid in cyclophosphamide-induced intestinal inflammation, oxidative stress, and barrier function in pigs
.
Sci Rep
.
2017
;
7
(
1
):
16530
.
62.
Hanczakowska
E
,
Szewczyk
A
,
Okoń
K
.
Effects of dietary caprylic and capric acids on piglet performance and mucosal epithelium structure of the ileum
.
J Anim Feed Sci
.
2011
;
20
(
4
):
556
-
565
.
63.
Zelante
T
,
Puccetti
M
,
Giovagnoli
S
,
Romani
L
.
Regulation of host physiology and immunity by microbial indole-3-aldehyde
.
Curr Opin Immunol
.
2021
;
70
:
27
-
32
.
64.
Machate
DJ
,
Figueiredo
PS
,
Marcelino
G
, et al
.
Fatty acid diets: regulation of gut microbiota composition and obesity and its related metabolic dysbiosis
.
Int J Mol Sci
.
2020
;
21
(
11
):
4093
.
65.
Desbois
AP
.
Potential applications of antimicrobial fatty acids in medicine, agriculture and other industries
.
Recent Pat Antiinfect Drug Discov
.
2012
;
7
(
2
):
111
-
122
.
66.
Weber
D
,
Oefner
PJ
,
Hiergeist
A
, et al
.
Low urinary indoxyl sulfate levels early after transplantation reflect a disrupted microbiome and are associated with poor outcome
.
Blood
.
2015
;
126
(
14
):
1723
-
1728
.
67.
Wanten
GJ
,
Janssen
FP
,
Naber
AH
.
Saturated triglycerides and fatty acids activate neutrophils depending on carbon chain-length
.
Eur J Clin Invest
.
2002
;
32
(
4
):
285
-
289
.
68.
Schwab
L
,
Goroncy
L
,
Palaniyandi
S
, et al
.
Neutrophil granulocytes recruited upon translocation of intestinal bacteria enhance graft-versus-host disease via tissue damage
.
Nat Med
.
2014
;
20
(
6
):
648
-
654
.
69.
Russo
E
,
Cinci
L
,
Di Gloria
L
, et al
.
Crohn's disease recurrence updates: first surgery vs. surgical relapse patients display different profiles of ileal microbiota and systemic microbial-associated inflammatory factors
.
Front Immunol
.
2022
;
13
:
886468
.
70.
Kaczmarek
A
,
Brinkman
BM
,
Heyndrickx
L
,
Vandenabeele
P
,
Krysko
DV
.
Severity of doxorubicin-induced small intestinal mucositis is regulated by the TLR-2 and TLR-9 pathways
.
J Pathol
.
2012
;
226
(
4
):
598
-
608
.
71.
van Vliet
MJ
,
Tissing
WJ
,
Dun
CA
, et al
.
Chemotherapy treatment in pediatric patients with acute myeloid leukemia receiving antimicrobial prophylaxis leads to a relative increase of colonization with potentially pathogenic bacteria in the gut
.
Clin Infect Dis
.
2009
;
49
(
2
):
262
-
270
.
72.
Zahednezhad
F
,
Saadat
M
,
Valizadeh
H
,
Zakeri-Milani
P
,
Baradaran
B
.
Liposome and immune system interplay: challenges and potentials
.
J Control Release
.
2019
;
305
:
194
-
209
.
73.
Cui
X
,
Wang
X
,
Chang
X
, et al
.
A new capacity of gut microbiota: fermentation of engineered inorganic carbon nanomaterials into endogenous organic metabolites
.
Proc Natl Acad Sci U S A
.
2023
;
120
(
20
):
e2218739120
.
74.
Ji
J
,
Qu
H
.
Cross-regulatory circuit between AHR and microbiota
.
Curr Drug Metab
.
2019
;
20
(
1
):
4
-
8
.
75.
Zenewicz
LA
,
Yin
X
,
Wang
G
, et al
.
IL-22 deficiency alters colonic microbiota to be transmissible and colitogenic
.
J Immunol
.
2013
;
190
(
10
):
5306
-
5312
.
76.
Lewis
RE
,
Chamilos
G
,
Prince
RA
,
Kontoyiannis
DP
.
Pretreatment with empty liposomes attenuates the immunopathology of invasive pulmonary aspergillosis in corticosteroid-immunosuppressed mice
.
Antimicrob Agents Chemother
.
2007
;
51
(
3
):
1078
-
1081
.
77.
Wang
Q
,
Tardi
P
,
Sadowski
N
,
Xie
S
,
Heller
D
,
Mayer
L
.
Pharmacokinetics, drug metabolism, and tissue distribution of CPX-351 in animals
.
Nanomedicine
.
2020
;
30
:
102275
.
78.
Mayer
LD
,
Tardi
P
,
Louie
AC
.
CPX-351: a nanoscale liposomal co-formulation of daunorubicin and cytarabine with unique biodistribution and tumor cell uptake properties
.
Int J Nanomedicine
.
2019
;
14
:
3819
-
3830
.
79.
Varasteh
S
,
Fink-Gremmels
J
,
Garssen
J
,
Braber
S
.
alpha-Lipoic acid prevents the intestinal epithelial monolayer damage under heat stress conditions: model experiments in Caco-2 cells
.
Eur J Nutr
.
2018
;
57
(
4
):
1577
-
1589
.
80.
Dietrich
C
.
Antioxidant functions of the aryl hydrocarbon receptor
.
Stem Cells Int
.
2016
;
2016
:
7943495
.
81.
Yen
HC
,
Oberley
TD
,
Gairola
CG
,
Szweda
LI
,
St Clair
DK
.
Manganese superoxide dismutase protects mitochondrial complex I against adriamycin-induced cardiomyopathy in transgenic mice
.
Arch Biochem Biophys
.
1999
;
362
(
1
):
59
-
66
.
82.
Lin
TL
,
Newell
LF
,
Stuart
RK
, et al
.
A phase 2 study to assess the pharmacokinetics and pharmacodynamics of CPX-351 and its effects on cardiac repolarization in patients with acute leukemias
.
Cancer Chemother Pharmacol
.
2019
;
84
(
1
):
163
-
173
.
83.
Ziegler
M
,
Han
JH
,
Landsburg
D
, et al
.
Impact of levofloxacin for the prophylaxis of bloodstream infection on the gut microbiome in patients with hematologic malignancy
.
Open Forum Infect Dis
.
2019
;
6
(
7
):
ofz252
.
You do not currently have access to this content.
Sign in via your Institution