• Tumor-agnostic ctDNA sequencing in CNSL is feasible and allows for detection of PRD.

  • We propose the molecular prognostic index for CNSL, a model integrating clinical and molecular features for improved risk profiling in CNSL.

Abstract

State-of-the-art response assessment of central nervous system lymphoma (CNSL) by magnetic resonance imaging is challenging and an insufficient predictor of treatment outcomes. Accordingly, the development of novel risk stratification strategies in CNSL is a high unmet medical need. We applied ultrasensitive circulating tumor DNA (ctDNA) sequencing to 146 plasma and cerebrospinal fluid (CSF) samples from 67 patients, aiming to develop an entirely noninvasive dynamic risk model considering clinical and molecular features of CNSL. Our ultrasensitive method allowed for the detection of CNSL-derived mutations in plasma ctDNA with high concordance to CSF and tumor tissue. Undetectable plasma ctDNA at baseline was associated with favorable outcomes. We tracked tumor-specific mutations in plasma-derived ctDNA over time and developed a novel CNSL biomarker based on this information: peripheral residual disease (PRD). Persistence of PRD after treatment was highly predictive of relapse. Integrating established baseline clinical risk factors with assessment of radiographic response and PRD during treatment resulted in the development and independent validation of a novel tool for risk stratification: molecular prognostic index for CNSL (MOP-C). MOP-C proved to be highly predictive of outcomes in patients with CNSL (failure-free survival hazard ratio per risk group of 6.60; 95% confidence interval, 3.12-13.97; P < .0001) and is publicly available at www.mop-c.com. Our results highlight the role of ctDNA sequencing in CNSL. MOP-C has the potential to improve the current standard of clinical risk stratification and radiographic response assessment in patients with CNSL, ultimately paving the way toward individualized treatment.

1.
Khwaja
J
,
Cwynarski
K
.
Management of primary and secondary CNS lymphoma
.
Hematol Oncol
.
2023
;
41
(
suppl 1
):
25
-
35
.
2.
Schaff
LR
,
Grommes
C
.
Primary central nervous system lymphoma
.
Blood
.
2022
;
140
(
9
):
971
-
979
.
3.
Ferreri
AJM
,
Calimeri
T
,
Cwynarski
K
, et al
.
Primary central nervous system lymphoma
.
Nat Rev Dis Primers
.
2023
;
9
(
1
):
29
.
4.
Cwynarski
K
,
Cummin
T
,
Osborne
W
, et al
.
Management of secondary central nervous system lymphoma
.
Br J Haematol
.
2023
;
200
(
2
):
160
-
169
.
5.
Bobillo
S
,
Khwaja
J
,
Ferreri
AJM
,
Cwynarski
K
.
Prevention and management of secondary central nervous system lymphoma
.
Haematologica
.
2023
;
108
(
3
):
673
-
689
.
6.
DeAngelis
LM
,
Yahalom
J
,
Thaler
HT
,
Kher
U
.
Combined modality therapy for primary CNS lymphoma
.
J Clin Oncol
.
1992
;
10
(
4
):
635
-
643
.
7.
Abrey
LE
,
Yahalom
J
,
DeAngelis
LM
.
Treatment for primary CNS lymphoma: the next step
.
J Clin Oncol
.
2000
;
18
(
17
):
3144
-
3150
.
8.
Hoang-Xuan
K
,
Taillandier
L
,
Chinot
O
, et al
.
Chemotherapy alone as initial treatment for primary CNS lymphoma in patients older than 60 years: a multicenter phase II study (26952) of the European Organization for Research and Treatment of Cancer Brain Tumor Group
.
J Clin Oncol
.
2003
;
21
(
14
):
2726
-
2731
.
9.
Hoang-Xuan
K
,
Deckert
M
,
Ferreri
AJM
, et al
.
European Association of Neuro-Oncology (EANO) guidelines for treatment of primary central nervous system lymphoma (PCNSL)
.
Neuro Oncol
.
2023
;
25
(
1
):
37
-
53
.
10.
Barajas
RF
,
Politi
LS
,
Anzalone
N
, et al
.
Consensus recommendations for MRI and PET imaging of primary central nervous system lymphoma: guideline statement from the International Primary CNS Lymphoma Collaborative Group (IPCG)
.
Neuro Oncol
.
2021
;
23
(
7
):
1056
-
1071
.
11.
Ferreri
AJM
,
Cwynarski
K
,
Pulczynski
E
, et al
.
Chemoimmunotherapy with methotrexate, cytarabine, thiotepa, and rituximab (MATRix regimen) in patients with primary CNS lymphoma: results of the first randomisation of the International Extranodal Lymphoma Study Group-32 (IELSG32) phase 2 trial
.
Lancet Haematol
.
2016
;
3
(
5
):
e217
-
e227
.
12.
Fritsch
K
,
Kasenda
B
,
Schorb
E
, et al
.
High-dose methotrexate-based immuno-chemotherapy for elderly primary CNS lymphoma patients (PRIMAIN study)
.
Leukemia
.
2017
;
31
(
4
):
846
-
852
.
13.
Abrey
LE
,
Batchelor
TT
,
Ferreri
AJM
, et al
.
Report of an International Workshop to standardize baseline evaluation and response criteria for primary CNS lymphoma
.
J Clin Oncol
.
2005
;
23
(
22
):
5034
-
5043
.
14.
Sieg
N
,
Naendrup
J
,
Gödel
P
, et al
.
Treatment patterns and disease course of previously untreated primary central nervous system lymphoma: feasibility of MTX-based regimens in clinical routine
.
Eur J Haematol
.
2021
;
107
(
2
):
202
-
210
.
15.
Montesinos-Rongen
M
,
Godlewska
E
,
Brunn
A
,
Wiestler
OD
,
Siebert
R
,
Deckert
M
.
Activating L265P mutations of the MYD88 gene are common in primary central nervous system lymphoma
.
Acta Neuropathol
.
2011
;
122
(
6
):
791
-
792
.
16.
Montesinos-Rongen
M
,
Schäfer
E
,
Siebert
R
,
Deckert
M
.
Genes regulating the B cell receptor pathway are recurrently mutated in primary central nervous system lymphoma
.
Acta Neuropathol
.
2012
;
124
(
6
):
905
-
906
.
17.
Montesinos-Rongen
M
,
Van Roost
D
,
Schaller
C
,
Wiestler
OD
,
Deckert
M
.
Primary diffuse large B-cell lymphomas of the central nervous system are targeted by aberrant somatic hypermutation
.
Blood
.
2004
;
103
(
5
):
1869
-
1875
.
18.
Vater
I
,
Montesinos-Rongen
M
,
Schlesner
M
, et al
.
The mutational pattern of primary lymphoma of the central nervous system determined by whole-exome sequencing
.
Leukemia
.
2015
;
29
(
3
):
677
-
685
.
19.
Chapuy
B
,
Stewart
C
,
Dunford
AJ
, et al
.
Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes
.
Nat Med
.
2018
;
24
(
5
):
679
-
690
.
20.
Schmitz
R
,
Wright
GW
,
Huang
DW
, et al
.
Genetics and pathogenesis of diffuse large B-cell lymphoma
.
N Engl J Med
.
2018
;
378
(
15
):
1396
-
1407
.
21.
Wright
GW
,
Huang
DW
,
Phelan
JD
, et al
.
A probabilistic classification tool for genetic subtypes of diffuse large B cell lymphoma with therapeutic implications
.
Cancer Cell
.
2020
;
37
(
4
):
551
-
568.e14
.
22.
Newman
AM
,
Bratman
SV
,
To
J
, et al
.
An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage
.
Nat Med
.
2014
;
20
(
5
):
548
-
554
.
23.
Newman
AM
,
Lovejoy
AF
,
Klass
DM
, et al
.
Integrated digital error suppression for improved detection of circulating tumor DNA
.
Nat Biotechnol
.
2016
;
34
(
5
):
547
-
555
.
24.
Kurtz
DM
,
Green
MR
,
Bratman
SV
, et al
.
Noninvasive monitoring of diffuse large B-cell lymphoma by immunoglobulin high-throughput sequencing
.
Blood
.
2015
;
125
(
24
):
3679
-
3687
.
25.
Alizadeh
AA
,
Eisen
MB
,
Davis
RE
, et al
.
Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling
.
Nature
.
2000
;
403
(
6769
):
503
-
511
.
26.
Scherer
F
,
Kurtz
DM
,
Newman
AM
, et al
.
Distinct biological subtypes and patterns of genome evolution in lymphoma revealed by circulating tumor DNA
.
Sci Transl Med
.
2016
;
8
(
364
):
364ra155
.
27.
Kurtz
DM
,
Esfahani
MS
,
Scherer
F
, et al
.
Dynamic risk profiling using serial tumor biomarkers for personalized outcome prediction
.
Cell
.
2019
;
178
(
3
):
699
-
713.e19
.
28.
Montesinos-Rongen
M
,
Brunn
A
,
Tuchscherer
A
, et al
.
Analysis of driver mutational hot spots in blood-derived cell-free DNA of patients with primary central nervous system lymphoma obtained before intracerebral biopsy
.
J Mol Diagn
.
2020
;
22
(
10
):
1300
-
1307
.
29.
Fontanilles
M
,
Marguet
F
,
Bohers
É
, et al
.
Non-invasive detection of somatic mutations using next-generation sequencing in primary central nervous system lymphoma
.
Oncotarget
.
2017
;
8
(
29
):
48157
-
48168
.
30.
Hiemcke-Jiwa
LS
,
Leguit
RJ
,
Snijders
TJ
, et al
.
MYD88 p.(L265P) detection on cell-free DNA in liquid biopsies of patients with primary central nervous system lymphoma
.
Br J Haematol
.
2019
;
185
(
5
):
974
-
977
.
31.
Alig
S
,
Macaulay
CW
,
Kurtz
DM
, et al
.
Short diagnosis-to-treatment interval is associated with higher circulating tumor DNA levels in diffuse large B-cell lymphoma
.
J Clin Oncol
.
2021
;
39
(
23
):
2605
-
2616
.
32.
Frank
MJ
,
Hossain
NM
,
Bukhari
A
, et al
.
Monitoring of circulating tumor DNA improves early relapse detection after axicabtagene ciloleucel infusion in large B-cell lymphoma: results of a prospective multi-institutional trial
.
J Clin Oncol
.
2021
;
39
(
27
):
3034
-
3043
.
33.
Kurtz
DM
,
Soo
J
,
Co Ting Keh
L
, et al
.
Enhanced detection of minimal residual disease by targeted sequencing of phased variants in circulating tumor DNA
.
Nat Biotechnol
.
2021
;
39
(
12
):
1537
-
1547
.
34.
Roschewski
M
,
Dunleavy
K
,
Pittaluga
S
, et al
.
Circulating tumour DNA and CT monitoring in patients with untreated diffuse large B-cell lymphoma: a correlative biomarker study
.
Lancet Oncol
.
2015
;
16
(
5
):
541
-
549
.
35.
Kurtz
DM
,
Scherer
F
,
Jin
MC
, et al
.
Circulating tumor DNA measurements as early outcome predictors in diffuse large B-cell lymphoma
.
J Clin Oncol
.
2018
;
36
(
28
):
2845
-
2853
.
36.
Mutter
JA
,
Alig
SK
,
Esfahani
MS
, et al
.
Circulating tumor DNA profiling for detection, risk stratification, and classification of brain lymphomas
.
J Clin Oncol
.
2023
;
41
(
9
):
1684
-
1694
.
37.
Sobesky
S
,
Mammadova
L
,
Cirillo
M
, et al
.
In-depth cell-free DNA sequencing reveals genomic landscape of Hodgkin’s lymphoma and facilitates ultrasensitive residual disease detection
.
Med
.
2021
;
2
(
10
):
1171
-
1193.e11
.
38.
Ferreri
AJM
,
Blay
J-Y
,
Reni
M
, et al
.
Prognostic scoring system for primary CNS lymphomas: the International Extranodal Lymphoma Study Group experience
.
J Clin Oncol
.
2003
;
21
(
2
):
266
-
272
.
39.
Illerhaus
G
,
Ferreri
AJM
,
Binder
M
, et al
.
Effects on survival of non-myeloablative chemoimmunotherapy compared to high-dose chemotherapy followed by autologous stem cell transplantation (HDC-ASCT) as consolidation therapy in patients with primary CNS lymphoma - results of an international randomized phase III trial (MATRix/IELSG43)
.
Blood
.
2022
;
140
(
suppl 2
). LBA-3–13.
40.
Wang
C
,
Wu
Q
,
Weimer
M
, et al
.
FLAML: a fast and lightweight AutoML library. arXiv
. Preprint posted online 19 May 2021. http://doi.org/10.48550/arXiv.1911.04706.
41.
A Language and Environment for Statistical Computing.
Team RC
;
2020
https://www.R-project.org/.
42.
Hernández-Verdin
I
,
Kirasic
E
,
Wienand
K
, et al
.
Molecular and clinical diversity in primary central nervous system lymphoma
.
Ann Oncol
.
2023
;
34
(
2
):
186
-
199
.
43.
Radke
J
,
Ishaque
N
,
Koll
R
, et al
.
The genomic and transcriptional landscape of primary central nervous system lymphoma
.
Nat Commun
.
2022
;
13
(
1
):
2558
.
44.
Montesinos-Rongen
M
,
Brunn
A
,
Sanchez-Ruiz
M
,
Küppers
R
,
Siebert
R
,
Deckert
M
.
Impact of a faulty germinal center reaction on the pathogenesis of primary diffuse large B cell lymphoma of the central nervous system
.
Cancers
.
2021
;
13
(
24
):
6334
.
45.
Gonzalez-Aguilar
A
,
Idbaih
A
,
Boisselier
B
, et al
.
Recurrent mutations of MYD88 and TBL1XR1 in primary central nervous system lymphomas
.
Clin Cancer Res
.
2012
;
18
(
19
):
5203
-
5211
.
46.
Bruno
A
,
Boisselier
B
,
Labreche
K
, et al
.
Mutational analysis of primary central nervous system lymphoma
.
Oncotarget
.
2014
;
5
(
13
):
5065
-
5075
.
47.
Braggio
E
,
Van Wier
S
,
Ojha
J
, et al
.
Genome-wide analysis uncovers novel recurrent alterations in primary central nervous system lymphomas
.
Clin Cancer Res
.
2015
;
21
(
17
):
3986
-
3994
.
48.
Yamada
S
,
Ishida
Y
,
Matsuno
A
,
Yamazaki
K
.
Primary diffuse large B-cell lymphomas of central nervous system exhibit remarkably high prevalence of oncogenic MYD88 and CD79B mutations
.
Leuk Lymphoma
.
2015
;
56
(
7
):
2141
-
2145
.
49.
Zhu
Q
,
Wang
J
,
Zhang
W
, et al
.
Whole-genome/exome sequencing uncovers mutations and copy number variations in primary diffuse large B-cell lymphoma of the central nervous system
.
Front Genet
.
2022
;
13
:
878618
.
50.
Courts
C
,
Montesinos-Rongen
M
,
Brunn
A
, et al
.
Recurrent inactivation of the PRDM1 gene in primary central nervous system lymphoma
.
J Neuropathol Exp Neurol
.
2008
;
67
(
7
):
720
-
727
.
51.
Montesinos-Rongen
M
,
Schmitz
R
,
Brunn
A
, et al
.
Mutations of CARD11 but not TNFAIP3 may activate the NF-κB pathway in primary CNS lymphoma
.
Acta Neuropathol
.
2010
;
120
(
4
):
529
-
535
.
52.
Bobillo
S
,
Crespo
M
,
Escudero
L
, et al
.
Cell free circulating tumor DNA in cerebrospinal fluid detects and monitors central nervous system involvement of B-cell lymphomas
.
Haematologica
.
2021
;
106
(
2
):
513
-
521
.
53.
Rimelen
V
,
Ahle
G
,
Pencreach
E
, et al
.
Tumor cell-free DNA detection in CSF for primary CNS lymphoma diagnosis
.
Acta Neuropathol Commun
.
2019
;
7
(
1
):
43
.
54.
Hattori
K
,
Sakata-Yanagimoto
M
,
Suehara
Y
, et al
.
Clinical significance of disease-specific MYD88 mutations in circulating DNA in primary central nervous system lymphoma
.
Cancer Sci
.
2018
;
109
(
1
):
225
-
230
.
55.
Meriranta
L
,
Alkodsi
A
,
Pasanen
A
, et al
.
Molecular features encoded in the ctDNA reveal heterogeneity and predict outcome in high-risk aggressive B-cell lymphoma
.
Blood
.
2022
;
139
(
12
):
1863
-
1877
.
56.
Bal
E
,
Kumar
R
,
Hadigol
M
, et al
.
Super-enhancer hypermutation alters oncogene expression in B cell lymphoma
.
Nature
.
2022
;
607
(
7920
):
808
-
815
.
57.
Sworder
BJ
,
Kurtz
DM
,
Alig
SK
, et al
.
Determinants of resistance to engineered T cell therapies targeting CD19 in large B cell lymphomas
.
Cancer Cell
.
2023
;
41
(
1
):
210
-
225.e5
.
You do not currently have access to this content.
Sign in via your Institution