• A new TCR-mimic monoclonal antibody specific for the WT1-derived epitope RMF presented by HLA-A2, ESK2, was developed.

  • ESK2 was engineered into a new CAR T format, AbTCR-CSR, which comprises primary and CSR, directed against 2 antigens, WT1 and CD33 in AML.

Abstract

Chimeric antigen receptor T-cell (CAR T) therapy has produced remarkable clinical responses in B-cell neoplasms. However, many challenges limit this class of agents for the treatment of other cancer types, in particular the lack of tumor-selective antigens for solid tumors and other hematological malignancies, such as acute myeloid leukemia (AML), which may be addressed without significant risk of severe toxicities while providing sufficient abundance for efficient tumor suppression. One approach to overcome this hurdle is dual targeting by an antibody–T-cell receptor (AbTCR) and a chimeric costimulatory signaling receptor (CSR) to 2 different antigens, in which both antigens are found together on the cancer cells but not together on normal cells. To explore this proof of concept in AML, we engineered a new T-cell format targeting Wilms tumor 1 protein (WT1) and CD33; both are highly expressed on most AML cells. Using an AbTCR comprising a newly developed TCR-mimic monoclonal antibody against the WT1 RMFPNAPYL (RMF) epitope/HLA-A2 complex, ESK2, and a secondary CSR comprising a single-chain variable fragment directed to CD33 linked to a truncated CD28 costimulatory fragment, this unique platform confers specific T-cell cytotoxicity to the AML cells while sparing healthy hematopoietic cells, including CD33+ myelomonocytic normal cells. These data suggest that this new platform, named AbTCR-CSR, through the combination of a AbTCR CAR and CSR could be an effective strategy to reduce toxicity and improve specificity and clinical outcomes in adoptive T-cell therapy in AML.

1.
Brentjens
RJ
,
Davila
ML
,
Riviere
I
, et al
.
CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia
.
Sci Transl Med
.
2013
;
5
(
177
):
177ra38
.
2.
Sadelain
M
,
Brentjens
R
,
Rivière
I
.
The basic principles of chimeric antigen receptor design
.
Cancer Discov
.
2013
;
3
(
4
):
388
-
398
.
3.
Brudno
JN
,
Kochenderfer
JN
.
Recent advances in CAR T-cell toxicity: mechanisms, manifestations and management
.
Blood Rev
.
2019
;
34
:
45
-
55
.
4.
Cummins
KD
,
Gill
S
.
Will CAR T cell therapy have a role in AML? Promises and pitfalls
.
Semin Hematol
.
2019
;
56
(
2
):
155
-
163
.
5.
Marofi
F
,
Rahman
HS
,
Al-Obaidi
ZMJ
, et al
.
Novel CAR T therapy is a ray of hope in the treatment of seriously ill AML patients
.
Stem Cell Res Ther
.
2021
;
12
(
1
):
465
.
6.
Akatsuka
Y
.
TCR-like CAR-T cells targeting MHC-bound minor histocompatibility antigens
.
Front Immunol
.
2020
;
11
:
257
.
7.
Dao
T
,
Yan
S
,
Veomett
N
, et al
.
Targeting the intracellular WT1 oncogene product with a therapeutic human antibody
.
Sci Transl Med
.
2013
;
5
(
176
):
176ra33
.
8.
Dao
T
,
Pankov
D
,
Scott
A
, et al
.
Therapeutic bispecific T-cell engager antibody targeting the intracellular oncoprotein WT1
.
Nat Biotechnol
.
2015
;
33
(
10
):
1079
-
1086
.
9.
Sugiyama
H
.
WT1 (Wilms' tumor gene 1): biology and cancer immunotherapy
.
Jpn J Clin Oncol
.
2010
;
40
(
5
):
377
-
387
.
10.
Cheever
MA
,
Allison
JP
,
Ferris
AS
, et al
.
The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research
.
Clin Cancer Res
.
2009
;
15
(
17
):
5323
-
5337
.
11.
Anguille
S
,
Willemen
Y
,
Lion
E
,
Smits
EL
,
Berneman
ZN
.
Dendritic cell vaccination in acute myeloid leukemia
.
Cytotherapy
.
2012
;
14
(
6
):
647
-
656
.
12.
Maslak
PG
,
Dao
T
,
Bernal
Y
, et al
.
Phase 2 trial of a multivalent WT1 peptide vaccine (galinpepimut-S) in acute myeloid leukemia
.
Blood Adv
.
2018
;
2
(
3
):
224
-
234
.
13.
Chapuis
AG
,
Egan
DN
,
Bar
M
, et al
.
T cell receptor gene therapy targeting WT1 prevents acute myeloid leukemia relapse post-transplant
.
Nat Med
.
2019
;
25
(
7
):
1064
-
1072
.
14.
May
RJ
,
Dao
T
,
Pinilla-Ibarz
J
, et al
.
Peptide epitopes from the Wilms' tumor 1 oncoprotein stimulate CD4+ and CD8+ T cells that recognize and kill human malignant mesothelioma tumor cells
.
Clin Cancer Res
.
2007
;
13
(
15 pt 1
):
4547
-
4555
.
15.
Chapuis
AG
,
Ragnarsson
GB
,
Nguyen
HN
, et al
.
Transferred WT1-reactive CD8+ T cells can mediate antileukemic activity and persist in post-transplant patients
.
Sci Transl Med
.
2013
;
5
(
174
):
174ra27
.
16.
Augsberger
C
,
Hänel
G
,
Xu
W
, et al
.
Targeting intracellular WT1 in AML with a novel RMF-peptide-MHC-specific T-cell bispecific antibody
.
Blood
.
2021
;
138
(
25
):
2655
-
2669
.
17.
Rafiq
S
,
Purdon
TJ
,
Daniyan
AF
, et al
.
Optimized T-cell receptor-mimic chimeric antigen receptor T cells directed toward the intracellular Wilms tumor 1 antigen
.
Leukemia
.
2017
;
31
(
8
):
1788
-
1797
.
18.
Ataie
N
,
Xiang
J
,
Cheng
N
, et al
.
Structure of a TCR-mimic antibody with target predicts pharmacogenetics
.
J Mol Biol
.
2016
;
428
(
1
):
194
-
205
.
19.
Holland
CJ
,
Crean
RM
,
Pentier
JM
, et al
.
Specificity of bispecific T cell receptors and antibodies targeting peptide-HLA
.
J Clin Invest
.
2020
;
130
(
5
):
2673
-
2688
.
20.
Xu
Y
,
Yang
Z
,
Horan
LH
, et al
.
A novel antibody-TCR (AbTCR) platform combines Fab-based antigen recognition with gamma/delta-TCR signaling to facilitate T-cell cytotoxicity with low cytokine release
.
Cell Discov
.
2018
;
4
:
62
.
21.
He
P
,
Liu
H
,
Zimdahl
B
, et al
.
A novel antibody-TCR (AbTCR) T-cell therapy is safe and effective against CD19-positive relapsed/refractory B-cell lymphoma
.
J Cancer Res Clin Oncol
.
2023
;
149
(
7
):
2757
-
2769
.
22.
Gao
L
,
Bellantuono
I
,
Elsässer
A
, et al
.
Selective elimination of leukemic CD34(+) progenitor cells by cytotoxic T lymphocytes specific for WT1
.
Blood
.
2000
;
95
(
7
):
2198
-
2203
.
23.
Thoma
SJ
,
Lamping
CP
,
Ziegler
BL
.
Phenotype analysis of hematopoietic CD34+ cell populations derived from human umbilical cord blood using flow cytometry and cDNA-polymerase chain reaction
.
Blood
.
1994
;
83
(
8
):
2103
-
2114
.
24.
Leko
V
,
Rosenberg
SA
.
Identifying and targeting human tumor antigens for T cell-based immunotherapy of solid tumors
.
Cancer Cell
.
2020
;
38
(
4
):
454
-
472
.
25.
Tambaro
FP
,
Singh
H
,
Jones
E
, et al
.
Autologous CD33-CAR-T cells for treatment of relapsed/refractory acute myelogenous leukemia
.
Leukemia
.
2021
;
35
(
11
):
3282
-
3286
.
26.
Ehninger
A
,
Kramer
M
,
Röllig
C
, et al
.
Distribution and levels of cell surface expression of CD33 and CD123 in acute myeloid leukemia
.
Blood Cancer J
.
2014
;
4
(
6
):
e218
.
27.
Griffin
JD
,
Linch
D
,
Sabbath
K
,
Larcom
P
,
Schlossman
SF
.
A monoclonal antibody reactive with normal and leukemic human myeloid progenitor cells
.
Leuk Res
.
1984
;
8
(
4
):
521
-
534
.
28.
Gejman
RS
,
Jones
HF
,
Klatt
MG
, et al
.
Identification of the targets of T-cell receptor therapeutic agents and cells by use of a high-throughput genetic platform
.
Cancer Immunol Res
.
2020
;
8
(
5
):
672
-
684
.
29.
Sewell
AK
.
Why must T cells be cross-reactive?
.
Nat Rev Immunol
.
2012
;
12
(
9
):
669
-
677
.
30.
Chang
AY
,
Gejman
RS
,
Brea
EJ
, et al
.
Opportunities and challenges for TCR mimic antibodies in cancer therapy
.
Expert Opin Biol Ther
.
2016
;
16
(
8
):
979
-
987
.
31.
Zumerle
S
,
Molon
B
,
Viola
A
.
Membrane rafts in T cell activation: a spotlight on CD28 costimulation
.
Front Immunol
.
2017
;
8
:
1467
.
32.
Mason
D
.
A very high level of crossreactivity is an essential feature of the T-cell receptor
.
Immunol Today
.
1998
;
19
(
9
):
395
-
404
.
33.
Katsarou
A
,
Sjöstrand
M
,
Naik
J
, et al
.
Combining a CAR and a chimeric costimulatory receptor enhances T cell sensitivity to low antigen density and promotes persistence
.
Sci Transl Med
.
2021
;
13
(
623
):
eabh1962
.
34.
Kloss
CC
,
Condomines
M
,
Cartellieri
M
,
Bachmann
M
,
Sadelain
M
.
Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells
.
Nat Biotechnol
.
2013
;
31
(
1
):
71
-
75
.
35.
Omer
B
,
Cardenas
MG
,
Pfeiffer
T
, et al
.
A costimulatory CAR improves TCR-based cancer immunotherapy
.
Cancer Immunol Res
.
2022
;
10
(
4
):
512
-
524
.
You do not currently have access to this content.
Sign in via your Institution