• Truncating mutations in MS4A1 with subsequent antigen loss is a major mechanism of resistance to CD3 × CD20 bispecific antibodies.

  • Spatial heterogeneity and branching evolution underlie progression in lymphoma during CD19 and CD20 targeting immunotherapy.

Abstract

CD19 chimeric antigen receptor (CAR) T cells and CD20 targeting T-cell–engaging bispecific antibodies (bispecs) have been approved in B-cell non-Hodgkin lymphoma lately, heralding a new clinical setting in which patients are treated with both approaches, sequentially. The aim of our study was to investigate the selective pressure of CD19- and CD20-directed therapy on the clonal architecture in lymphoma. Using a broad analytical pipeline on 28 longitudinally collected specimen from 7 patients, we identified truncating mutations in the gene encoding CD20 conferring antigen loss in 80% of patients relapsing from CD20 bispecs. Pronounced T-cell exhaustion was identified in cases with progressive disease and retained CD20 expression. We also confirmed CD19 loss after CAR T-cell therapy and reported the case of sequential CD19 and CD20 loss. We observed branching evolution with re-emergence of CD20+ subclones at later time points and spatial heterogeneity for CD20 expression in response to targeted therapy. Our results highlight immunotherapy as not only an evolutionary bottleneck selecting for antigen loss variants but also complex evolutionary pathways underlying disease progression from these novel therapies.

1.
Bannerji
R
,
Arnason
JE
,
Advani
RH
, et al
.
Odronextamab, a human CD20×CD3 bispecific antibody in patients with CD20-positive B-cell malignancies (ELM-1): results from the Relapsed or Refractory Non-Hodgkin Lymphoma Cohort in a single-arm, multicentre, phase 1 trial
.
Lancet Haematol
.
2022
;
9
(
5
):
e327
-
e339
.
2.
Dickinson
MJ
,
Carlo-Stella
C
,
Morschhauser
F
, et al
.
Glofitamab for relapsed or refractory diffuse large B-cell lymphoma
.
N Engl J Med
.
2022
;
387
(
24
):
2220
-
2231
.
3.
Hutchings
M
,
Mous
R
,
Clausen
MR
, et al
.
Dose escalation of subcutaneous epcoritamab in patients with relapsed or refractory B-cell non-Hodgkin lymphoma: an open-label, phase 1/2 study
.
Lancet
.
2021
;
398
(
10306
):
1157
-
1169
.
4.
Budde
LE
,
Sehn
LH
,
Matasar
M
, et al
.
Safety and efficacy of mosunetuzumab, a bispecific antibody, in patients with relapsed or refractory follicular lymphoma: a single-arm, multicentre, phase 2 study
.
Lancet Oncol
.
2022
;
23
(
8
):
1055
-
1065
.
5.
Kang
C
.
Mosunetuzumab: first approval
.
Drugs
.
2022
;
82
(
11
):
1229
-
1234
.
6.
Thieblemont
C
,
Phillips
T
,
Ghesquieres
H
, et al
.
Epcoritamab, a novel, subcutaneous CD3xCD20 bispecific T-cell-engaging antibody, in relapsed or refractory large B-cell lymphoma: dose expansion in a phase I/II trial
.
J Clin Oncol
.
2023
;
41
(
12
):
2238
-
2247
.
7.
Phillips
TJ
,
Olszewski
AJ
,
Munoz
J
, et al
.
Mosunetuzumab, a novel CD20/CD3 bispecific antibody, in combination with CHOP confers high response rates in patients with diffuse large B-cell lymphoma
.
Blood
.
2020
;
136
(
suppl 1
):
37
-
38
.
8.
Salles
G
,
Duell
J
,
González Barca
E
, et al
.
Tafasitamab plus lenalidomide in relapsed or refractory diffuse large B-cell lymphoma (L-MIND): a multicentre, prospective, single-arm, phase 2 study
.
Lancet Oncol
.
2020
;
21
(
7
):
978
-
988
.
9.
Orlando
EJ
,
Han
X
,
Tribouley
C
, et al
.
Genetic mechanisms of target antigen loss in CAR19 therapy of acute lymphoblastic leukemia
.
Nat Med
.
2018
;
24
(
10
):
1504
-
1506
.
10.
Jain
MD
,
Ziccheddu
B
,
Coughlin
CA
, et al
.
Whole-genome sequencing reveals complex genomic features underlying anti-CD19 CAR T-cell treatment failures in lymphoma
.
Blood
.
2022
;
140
(
5
):
491
-
503
.
11.
Young
MD
,
Behjati
S
.
SoupX removes ambient RNA contamination from droplet-based single-cell RNA sequencing data
.
Gigascience
.
2020
;
9
(
12
):
giaa151
.
12.
Stuart
T
,
Butler
A
,
Hoffman
P
, et al
.
Comprehensive integration of single-cell data
.
Cell
.
2019
;
177
(
7
):
1888
-
1902.e21
.
13.
Haghverdi
L
,
Lun
ATL
,
Morgan
MD
,
Marioni
JC
.
Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors
.
Nat Biotechnol
.
2018
;
36
(
5
):
421
-
427
.
14.
Andreatta
M
,
Corria-Osorio
J
,
Müller
S
,
Cubas
R
,
Coukos
G
,
Carmona
SJ
.
Interpretation of T cell states from single-cell transcriptomics data using reference atlases
.
Nat Commun
.
2021
;
12
(
1
):
2965
.
15.
Wu
T
,
Hu
E
,
Xu
S
, et al
.
clusterProfiler 4.0: a universal enrichment tool for interpreting omics data
.
Innovation (Camb)
.
2021
;
2
(
3
):
100141
.
16.
Patel
AP
,
Tirosh
I
,
Trombetta
JJ
, et al
.
Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma
.
Science
.
2014
;
344
(
6190
):
1396
-
1401
.
17.
Martin
M
.
Cutadapt removes adapter sequences from high-throughput sequencing reads
.
EMBnet J
.
2011
;
17
(
1
):
10
-
12
.
18.
Li
H
,
Durbin
R
.
Fast and accurate short read alignment with Burrows-Wheeler transform
.
Bioinformatics
.
2009
;
25
(
14
):
1754
-
1760
.
19.
Li
H
,
Handsaker
B
,
Wysoker
A
, et al
.
The sequence alignment/map format and SAMtools
.
Bioinformatics
.
2009
;
25
(
16
):
2078
-
2079
.
20.
McKenna
A
,
Hanna
M
,
Banks
E
, et al
.
The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data
.
Genome Res
.
2010
;
20
(
9
):
1297
-
1303
.
21.
Koboldt
DC
,
Zhang
Q
,
Larson
DE
, et al
.
VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing
.
Genome Res
.
2012
;
22
(
3
):
568
-
576
.
22.
Kim
S
,
Scheffler
K
,
Halpern
AL
, et al
.
Strelka2: fast and accurate calling of germline and somatic variants
.
Nat Methods
.
2018
;
15
(
8
):
591
-
594
.
23.
Fang
H
,
Bergmann
EA
,
Arora
K
, et al
.
Indel variant analysis of short-read sequencing data with Scalpel
.
Nat Protoc
.
2016
;
11
(
12
):
2529
-
2548
.
24.
Thorvaldsdóttir
H
,
Robinson
JT
,
Mesirov
JP
.
Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration
.
Brief Bioinform
.
2013
;
14
(
2
):
178
-
192
.
25.
Wang
K
,
Li
M
,
Hakonarson
H
.
ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data
.
Nucleic Acids Res
.
2010
;
38
(
16
):
e164
.
26.
Wright
GW
,
Huang
DW
,
Phelan
JD
, et al
.
A probabilistic classification tool for genetic subtypes of diffuse large B cell lymphoma with therapeutic implications
.
Cancer Cell
.
2020
;
37
(
4
):
551
-
568.e14
.
27.
Boeva
V
,
Popova
T
,
Bleakley
K
, et al
.
Control-FREEC: a tool for assessing copy number and allelic content using next-generation sequencing data
.
Bioinformatics
.
2012
;
28
(
3
):
423
-
425
.
28.
Favero
F
,
Joshi
T
,
Marquard
AM
, et al
.
Sequenza: allele-specific copy number and mutation profiles from tumor sequencing data
.
Ann Oncol
.
2015
;
26
(
1
):
64
-
70
.
29.
Rasche
L
,
Schinke
C
,
Maura
F
, et al
.
The spatio-temporal evolution of multiple myeloma from baseline to relapse-refractory states
.
Nat Commun
.
2022
;
13
(
1
):
4517
.
30.
Miller
CA
,
White
BS
,
Dees
ND
, et al
.
SciClone: inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution
.
PLoS Comput Biol
.
2014
;
10
(
8
):
e1003665
.
31.
Dobin
A
,
Davis
CA
,
Schlesinger
F
, et al
.
STAR: ultrafast universal RNA-seq aligner
.
Bioinformatics
.
2013
;
29
(
1
):
15
-
21
.
32.
Trapnell
C
,
Williams
BA
,
Pertea
G
, et al
.
Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation
.
Nat Biotechnol
.
2010
;
28
(
5
):
511
-
515
.
33.
Shen
S
,
Park
JW
,
Lu
Z-X
, et al
.
rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-seq data
.
Proc Natl Acad Sci U S A
.
2014
;
111
(
51
):
E5593
-
E5601
.
34.
Uhrig
S
,
Ellermann
J
,
Walther
T
, et al
.
Accurate and efficient detection of gene fusions from RNA sequencing data
.
Genome Res
.
2021
;
31
(
3
):
448
-
460
.
35.
Rasche
L
,
Vago
L
,
Mutis
T
. Tumour escape from CAR-T cells. In:
Kröger
N
,
Gribben
J
,
Chabannon
C
, eds.
The EBMT/EHA CAR-T Cell Handbook
.
Springer
;
2022
:
15
-
22
.
36.
Li
H
,
van der Leun
AM
,
Yofe
I
, et al
.
Dysfunctional CD8 T cells form a proliferative, dynamically regulated compartment within human melanoma
.
Cell
.
2019
;
176
(
4
):
775
-
789.e18
.
37.
Friedrich
MJ
,
Neri
P
,
Kehl
N
, et al
.
The pre-existing T cell landscape determines the response to bispecific T cell engagers in multiple myeloma patients
.
Cancer Cell
.
2023
;
41
(
4
):
711
-
725.e6
.
38.
Chong
EA
,
Ruella
M
,
Schuster
SJ
;
Lymphoma Program Investigators at the University of Pennsylvania
.
Five-year outcomes for refractory B-cell lymphomas with CAR T-cell therapy
.
N Engl J Med
.
2021
;
384
(
7
):
673
-
674
.
39.
Fischer
J
,
Paret
C
,
El Malki
K
, et al
.
CD19 isoforms enabling resistance to CART-19 immunotherapy are expressed in B-ALL patients at initial diagnosis
.
J Immunother
.
2017
;
40
(
5
):
187
-
195
.
40.
Shouval
R
,
Alarcon Tomas
A
,
Fein
JA
, et al
.
Impact of genomic alterations in large B-cell lymphoma treated with CD19-chimeric antigen receptor T-cell therapy
.
J Clin Oncol
.
2022
;
40
(
4
):
369
-
381
.
41.
Sotillo
E
,
Barrett
DM
,
Black
KL
, et al
.
Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy
.
Cancer Discov
.
2015
;
5
(
12
):
1282
-
1295
.
42.
Bagashev
A
,
Sotillo
E
,
Tang
C-HA
, et al
.
CD19 alterations emerging after CD19-directed immunotherapy cause retention of the misfolded protein in the endoplasmic reticulum
.
Mol Cell Biol
.
2018
;
38
(
21
):
e00383-18
.
43.
Sztal
TE
,
Stainier
DYR
.
Transcriptional adaptation: a mechanism underlying genetic robustness
.
Development
.
2020
;
147
(
15
):
dev186452
.
44.
Schuster
SJ
,
Huw
L-Y
,
Bolen
CR
, et al
.
Characterization of CD20 expression loss as a mechanism of resistance to mosunetuzumab in patients with relapsed/refractory B-cell non-Hodgkin lymphomas
.
J Clin Oncol
.
2022
;
40
(
16 suppl
):
7526
.
45.
Pavlasova
G
,
Mraz
M
.
The regulation and function of CD20: an “enigma” of B-cell biology and targeted therapy
.
Haematologica
.
2020
;
105
(
6
):
1494
-
1506
.
46.
Kuijpers
TW
,
Bende
RJ
,
Baars
PA
, et al
.
CD20 deficiency in humans results in impaired T cell–independent antibody responses
.
J Clin Invest
.
2010
;
120
(
1
):
214
-
222
.
47.
O’Keefe
TL
,
Williams
GT
,
Davies
SL
,
Neuberger
MS
.
Mice carrying a CD20 gene disruption
.
Immunogenetics
.
1998
;
48
(
2
):
125
-
132
.
48.
Neelapu
SS
,
Locke
FL
,
Bartlett
NL
, et al
.
Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma
.
N Engl J Med
.
2017
;
377
(
26
):
2531
-
2544
.
49.
Xu
X
,
Sun
Q
,
Liang
X
, et al
.
Mechanisms of relapse after CD19 CAR T-cell therapy for acute lymphoblastic leukemia and its prevention and treatment strategies
.
Front Immunol
.
2019
;
10
:
2664
.
50.
Maude
SL
,
Laetsch
TW
,
Buechner
J
, et al
.
Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia
.
N Engl J Med
.
2018
;
378
(
5
):
439
-
448
.
51.
Mailankody
S
,
Devlin
SM
,
Landa
J
, et al
.
GPRC5D-targeted CAR T cells for myeloma
.
N Engl J Med
.
2022
;
387
(
13
):
1196
-
1206
.
52.
Lee
H
,
Neri
P
,
Ahn
S
, et al
.
Role of TNFRSF17 and GPRC5D structural and point mutations in resistance to targeted immunotherapies in multiple myeloma (MM)
.
Blood
.
2022
;
140
(
suppl 1
):
252
-
253
.
53.
Truger
MS
,
Duell
J
,
Zhou
X
, et al
.
Single- and double-hit events in genes encoding immune targets before and after T cell-engaging antibody therapy in MM
.
Blood Adv
.
2021
;
5
(
19
):
3794
-
3798
.
54.
Da Vià
MC
,
Dietrich
O
,
Truger
M
, et al
.
Homozygous BCMA gene deletion in response to anti-BCMA CAR T cells in a patient with multiple myeloma
.
Nat Med
.
2021
;
27
(
4
):
616
-
619
.
55.
Demchenko
YN
,
Kuehl
WM
.
A critical role for the NFkB pathway in multiple myeloma
.
Oncotarget
.
2010
;
1
(
1
):
59
-
68
.
56.
Schuster
SJ
,
Bishop
MR
,
Tam
CS
, et al
.
Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma
.
N Engl J Med
.
2019
;
380
(
1
):
45
-
56
.
57.
Nerreter
T
,
Letschert
S
,
Götz
R
, et al
.
Super-resolution microscopy reveals ultra-low CD19 expression on myeloma cells that triggers elimination by CD19 CAR-T
.
Nat Commun
.
2019
;
10
(
1
):
3137
.
58.
Ang
Z
,
Paruzzo
L
,
Hayer
KE
, et al
.
Alternative splicing of its 5’ UTR limits CD20 mRNA translation and enables resistance to CD20-directed immunotherapies
.
Blood
.
2023
;
142
(
20
):
1724
-
1739
.
59.
Philipp
N
,
Kazerani
M
,
Nicholls
A
, et al
.
T-cell exhaustion induced by continuous bispecific molecule exposure is ameliorated by treatment-free intervals
.
Blood
.
2022
;
140
(
10
):
1104
-
1118
.
60.
Singh
N
,
Lee
YG
,
Shestova
O
, et al
.
Impaired death receptor signaling in leukemia causes antigen-independent resistance by inducing CAR T-cell dysfunction
.
Cancer Discov
.
2020
;
10
(
4
):
552
-
567
.
61.
Duell
J
,
Dittrich
M
,
Bedke
T
, et al
.
Frequency of regulatory T cells determines the outcome of the T-cell-engaging antibody blinatumomab in patients with B-precursor ALL
.
Leukemia
.
2017
;
31
(
10
):
2181
-
2190
.
62.
Shalabi
H
,
Kraft
IL
,
Wang
H-W
, et al
.
Sequential loss of tumor surface antigens following chimeric antigen receptor T-cell therapies in diffuse large B-cell lymphoma
.
Haematologica
.
2018
;
103
(
5
):
e215
-
e218
.
63.
Yu
H
,
Sotillo
E
,
Harrington
C
, et al
.
Repeated loss of target surface antigen after immunotherapy in primary mediastinal large B cell lymphoma
.
Am J Hematol
.
2017
;
92
(
1
):
E11
-
E13
.
64.
Leipold
AM
,
Werner
RA
,
Düll
J
, et al
.
Th17.1 cell driven sarcoidosis-like inflammation after anti-BCMA CAR T cells in multiple myeloma
.
Leukemia
.
2023
;
37
(
3
):
650
-
658
.
65.
Meriranta
L
,
Alkodsi
A
,
Pasanen
A
, et al
.
Molecular features encoded in the ctDNA reveal heterogeneity and predict outcome in high-risk aggressive B-cell lymphoma
.
Blood
.
2022
;
139
(
12
):
1863
-
1877
.
66.
Eertink
JJ
,
Pfaehler
EAG
,
Wiegers
SE
, et al
.
Quantitative radiomics features in diffuse large B-cell lymphoma: does segmentation method matter?
.
J Nucl Med
.
2022
;
63
(
3
):
389
-
395
.
67.
Shah
NN
,
Johnson
BD
,
Schneider
D
, et al
.
Bispecific anti-CD20, anti-CD19 CAR T cells for relapsed B cell malignancies: a phase 1 dose escalation and expansion trial
.
Nat Med
.
2020
;
26
(
10
):
1569
-
1575
.
68.
Spiegel
JY
,
Patel
S
,
Muffly
L
, et al
.
CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies: a phase 1 trial
.
Nat Med
.
2021
;
27
(
8
):
1419
-
1431
.
69.
Chapuy
B
,
Stewart
C
,
Dunford
AJ
, et al
.
Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes
.
Nat Med
.
2018
;
24
(
5
):
679
-
690
.
You do not currently have access to this content.
Sign in via your Institution