Abstract

Hematopoietic stem cells (HSCs) are instrumental for organismal survival because they are responsible for lifelong production of mature blood lineages in homeostasis and response to external stress. To fulfill their function, HSCs rely on reciprocal interactions with specialized tissue microenvironments, termed HSC niches. From embryonic development to advanced aging, HSCs transition through several hematopoietic organs in which they are supported by distinct extrinsic cues. Here, we describe recent discoveries on how HSC niches collectively adapt to ensure robust hematopoietic function during biological aging and after exposure to acute stress. We also discuss the latest strategies leveraging niche-derived signals to revert aging-associated phenotypes and enhance hematopoietic recovery after myeloablation.

1.
Morrison
SJ
,
Scadden
DT
.
The bone marrow niche for hematopoietic stem cells
.
Nature
.
2014
;
505
(
7483
):
327
-
334
.
2.
Pinho
S
,
Frenette
PS
.
Hematopoietic stem cell activity and interactions with the niche
.
Nat Rev Mol Cell Biol
.
2019
;
20
(
5
):
303
-
320
.
3.
Sugiyama
T
,
Kohara
H
,
Noda
M
,
Nagasawa
T
.
Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches
.
Immunity
.
2006
;
25
(
6
):
977
-
988
.
4.
Méndez-Ferrer
S
,
Michurina
T V
,
Ferraro
F
, et al
.
Mesenchymal and hematopoietic stem cells form a unique bone marrow niche
.
Nature
.
2010
;
466
(
7308
):
829
-
834
.
5.
Ding
L
,
Saunders
TL
,
Enikolopov
G
,
Morrison
SJ
.
Endothelial and perivascular cells maintain hematopoietic stem cells
.
Nature
.
2012
;
481
(
7382
):
457
-
462
.
6.
Yamazaki
S
,
Ema
H
,
Karlsson
G
, et al
.
Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow Niche
.
Cell
.
2011
;
147
(
5
):
1146
-
1158
.
7.
Bruns
I
,
Lucas
D
,
Pinho
S
, et al
.
Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion
.
Nat Med
.
2014
;
20
(
11
):
1315
-
1320
.
8.
Zhao
M
,
Perry
JM
,
Marshall
H
, et al
.
Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells
.
Nat Med
.
2014
;
20
(
11
):
1321
-
1326
.
9.
Hur
J
,
Choi
J-I
,
Lee
H
, et al
.
CD82/KAI1 maintains the dormancy of long-term hematopoietic stem cells through interaction with DARC-expressing macrophages
.
Cell stem cell
.
2016
;
18
(
4
):
508
-
521
.
10.
Calvi
LM
,
Adams
GB
,
Weibrecht
KW
, et al
.
Osteoblastic cells regulate the hematopoietic stem cell niche
.
Nature
.
2003
;
425
(
6960
):
841
-
846
.
11.
Zhang
J
,
Niu
C
,
Ye
L
, et al
.
Identification of the hematopoietic stem cell niche and control of the niche size
.
Nature
.
2003
;
425
(
6960
):
836
-
841
.
12.
Calvanese
V
,
Mikkola
HKA
.
The genesis of human hematopoietic stem cells
.
Blood
.
2023
;
142
(
6
):
519
-
532
.
13.
Medvinsky
A
,
Dzierzak
E
.
Definitive hematopoiesis is autonomously initiated by the AGM region
.
Cell
.
1996
;
86
(
6
):
897
-
906
.
14.
de Bruijn
MF
,
Speck
NA
,
Peeters
MC
,
Dzierzak
E
.
Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo
.
EMBO J
.
2000
;
19
(
11
):
2465
-
2474
.
15.
Boisset
J-C
,
van Cappellen
W
,
Andrieu-Soler
C
,
Galjart
N
,
Dzierzak
E
,
Robin
C
.
In vivo imaging of hematopoietic cells emerging from the mouse aortic endothelium
.
Nature
.
2010
;
464
(
7285
):
116
-
120
.
16.
Ganuza
M
,
Clements
W
,
McKinney-Freeman
S
.
Specification of hematopoietic stem cells in mammalian embryos: a rare or frequent event?
.
Blood
.
2022
;
140
(
4
):
309
-
320
.
17.
Hadland
B
,
Varnum-Finney
B
,
Dozono
S
, et al
.
Engineering a niche supporting hematopoietic stem cell development using integrated single-cell transcriptomics
.
Nat Commun
.
2022
;
13
(
1
):
1584
.
18.
Crosse
EI
,
Gordon-Keylock
S
,
Rybtsov
S
, et al
.
Multi-layered spatial transcriptomics identify secretory factors promoting human hematopoietic stem cell development
.
Cell stem cell
.
2020
;
27
(
5
):
822
-
839.e8
.
19.
Espín-Palazón
R
,
Stachura
DL
,
Campbell
CA
, et al
.
Proinflammatory signaling regulates hematopoietic stem cell emergence
.
Cell
.
2014
;
159
(
5
):
1070
-
1085
.
20.
Ema
H
,
Nakauchi
H
.
Expansion of hematopoietic stem cells in the developing liver of a mouse embryo
.
Blood
.
2000
;
95
(
7
):
2284
-
2288
.
21.
Wineman
J
,
Moore
K
,
Lemischka
I
,
Müller-Sieburg
C
.
Functional heterogeneity of the hematopoietic microenvironment: rare stromal elements maintain long-term repopulating stem cells
.
Blood
.
1996
;
87
(
10
):
4082
-
4090
.
22.
Moore
K
,
Ema
H
,
Lemischka
IR
.
In vitro maintenance of highly purified, transplantable hematopoietic stem cells
.
Blood
.
1997
;
89
(
12
):
4337
-
4347
.
23.
Nolta
JA
,
Thiemann
FT
,
Arakawa-Hoyt
J
, et al
.
The AFT024 stromal cell line supports long-term ex vivo maintenance of engrafting multipotent human hematopoietic progenitors
.
Leukemia
.
2002
;
16
(
3
):
352
-
361
.
24.
Zhang
CC
,
Lodish
HF
.
Insulin-like growth factor 2 expressed in a novel fetal liver cell population is a growth factor for hematopoietic stem cells
.
Blood
.
2004
;
103
(
7
):
2513
-
2521
.
25.
Chou
S
,
Flygare
J
,
Lodish
H
.
Fetal hepatic progenitors support long-term expansion of hematopoietic stem cells
.
Exp Hematol
.
2013
;
41
(
5
):
479
-
490.e4
.
26.
Kokkaliaris
KD
,
Drew
E
,
Endele
M
, et al
.
Identification of factors promoting ex vivo maintenance of mouse hematopoietic stem cells by long-term single-cell quantification
.
Blood
.
2016
;
128
(
9
):
1181
-
1192
.
27.
Gao
X
,
Xu
C
,
Asada
N
,
Frenette
PS
.
The hematopoietic stem cell niche: from embryo to adult
.
Development
.
2018
;
145
(
2
):
dev139691
.
28.
Lu
Y
,
Liu
M
,
Yang
J
, et al
.
Spatial transcriptome profiling by MERFISH reveals fetal liver hematopoietic stem cell niche architecture
.
Cell Discov
.
2021
;
7
(
1
):
47
.
29.
Khan
JA
,
Mendelson
A
,
Kunisaki
Y
, et al
.
Fetal liver hematopoietic stem cell niches associate with portal vessels
.
Science
.
2016
;
351
(
6269
):
176
-
180
.
30.
Gao
S
,
Shi
Q
,
Zhang
Y
, et al
.
Identification of HSC/MPP expansion units in fetal liver by single-cell spatiotemporal transcriptomics
.
Cell Res
.
2022
;
32
(
1
):
38
-
53
.
31.
Wattrus
SJ
,
Smith
ML
,
Rodrigues
CP
, et al
.
Quality assurance of hematopoietic stem cells by macrophages determines stem cell clonality
.
Science
.
2022
;
377
(
6613
):
1413
-
1419
.
32.
Christensen
JL
,
Wright
DE
,
Wagers
AJ
,
Weissman
IL
.
Circulation and chemotaxis of fetal hematopoietic stem cells
.
PLoS Biol
.
2004
;
2
(
3
):
E75
.
33.
Bertrand
JY
,
Desanti
GE
,
Lo-Man
R
,
Leclerc
C
,
Cumano
A
,
Golub
R
.
Fetal spleen stroma drives macrophage commitment
.
Development
.
2006
;
133
(
18
):
3619
-
3628
.
34.
Wolber
FM
,
Leonard
E
,
Michael
S
,
Orschell-Traycoff
CM
,
Yoder
MC
,
Srour
EF
.
Roles of spleen and liver in development of the murine hematopoietic system
.
Exp Hematol
.
2002
;
30
(
9
):
1010
-
1019
.
35.
Hall
TD
,
Kim
H
,
Dabbah
M
, et al
.
Murine fetal bone marrow does not support functional hematopoietic stem and progenitor cells until birth
.
Nat Commun
.
2022
;
13
(
1
):
5403
.
36.
Coşkun
S
,
Chao
H
,
Vasavada
H
, et al
.
Development of the fetal bone marrow niche and regulation of HSC quiescence and homing ability by emerging osteolineage cells
.
Cell Rep
.
2014
;
9
(
2
):
581
-
590
.
37.
Zheng
Z
,
He
H
,
Tang
XT
, et al
.
Uncovering the emergence of HSCs in the human fetal bone marrow by single-cell RNA-seq analysis
.
Cell Stem Cell
.
2022
;
29
(
11
):
1562
-
1579.e7
.
38.
Patel
SH
,
Christodoulou
C
,
Weinreb
C
, et al
.
Lifelong multilineage contribution by embryonic-born blood progenitors
.
Nature
.
2022
;
606
(
7915
):
747
-
753
.
39.
Omatsu
Y
,
Sugiyama
T
,
Kohara
H
, et al
.
The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche
.
Immunity
.
2010
;
33
(
3
):
387
-
399
.
40.
Zhou
BO
,
Yue
R
,
Murphy
MM
,
Peyer
J
,
Morrison
SJ
.
Leptin Receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow
.
Cell Stem Cell
.
2014
;
15
(
2
):
154
-
168
.
41.
Coutu
DL
,
Kokkaliaris
KD
,
Kunz
L
,
Schroeder
T
.
Three-dimensional map of nonhematopoietic bone and bone-marrow cells and molecules
.
Nat Biotechnol
.
2017
;
35
(
12
):
1202
-
1210
.
42.
Liu
Y
,
Chen
Q
,
Jeong
H-W
, et al
.
A specialized bone marrow microenvironment for fetal hematopoiesis
.
Nat Commun
.
2022
;
13
(
1
):
1327
.
43.
Ganuza
M
,
Hall
T
,
Myers
J
, et al
.
Murine foetal liver supports limited detectable expansion of life-long hematopoietic progenitors
.
Nat Cell Biol
.
2022
;
24
(
10
):
1475
-
1486
.
44.
Bowie
MB
,
Kent
DG
,
Dykstra
B
, et al
.
Identification of a new intrinsically timed developmental checkpoint that reprograms key hematopoietic stem cell properties
.
Proc Natl Acad Sci U S A
.
2007
;
104
(
14
):
5878
-
5882
.
45.
Helbling
PM
,
Piñeiro-Yáñez
E
,
Gerosa
R
, et al
.
Global transcriptomic profiling of the bone marrow stromal microenvironment during postnatal development, aging, and inflammation
.
Cell Rep
.
2019
;
29
(
10
):
3313
-
3330.e4
.
46.
Kara
N
,
Xue
Y
,
Zhao
Z
, et al
.
Endothelial and leptin receptor(+) cells promote the maintenance of stem cells and hematopoiesis in early postnatal murine bone marrow
.
Dev Cell
.
2023
;
58
(
5
):
348
-
360.e6
.
47.
Matsuoka
S
,
Facchini
R
,
Luis
TC
, et al
.
Loss of endothelial membrane KIT ligand affects systemic KIT ligand levels but not bone marrow hematopoietic stem cells
.
Blood
.
2023
;
142
(
19
):
1622
-
1632
.
48.
Kokkaliaris
KD
,
Kunz
L
,
Cabezas-Wallscheid
N
, et al
.
Adult blood stem cell localization reflects the abundance of reported bone marrow niche cell types and their combinations
.
Blood
.
2020
;
136
(
20
):
2296
-
2307
.
49.
Zhou
BO
,
Ding
L
,
Morrison
SJ
.
Hematopoietic stem and progenitor cells regulate the regeneration of their niche by secreting angiopoietin-1
.
Elife
.
2015
;
4
:
e05521
.
50.
Hoggatt
J
,
Kfoury
Y
,
Scadden
DT
.
Hematopoietic stem cell niche in health and disease
.
Annu Rev Pathol
.
2016
;
11
:
555
-
581
.
51.
Ding
L
,
Morrison
SJ
.
Hematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches
.
Nature
.
2013
;
495
(
7440
):
231
-
235
.
52.
Himburg
HA
,
Termini
CM
,
Schlussel
L
, et al
.
Distinct bone marrow sources of pleiotrophin control hematopoietic stem cell maintenance and regeneration
.
Cell Stem Cell
.
2018
;
23
(
3
):
370
-
381.e5
.
53.
Kunisaki
Y
,
Bruns
I
,
Scheiermann
C
, et al
.
Arteriolar niches maintain hematopoietic stem cell quiescence
.
Nature
.
2013
;
502
(
7473
):
637
-
643
.
54.
Kokkaliaris
KD
.
Dissecting the spatial bone marrow microenvironment of hematopoietic stem cells
.
Curr Opin Oncol
.
2020
;
32
(
2
):
154
-
161
.
55.
Acar
M
,
Kocherlakota
KS
,
Murphy
MM
, et al
.
Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal
.
Nature
.
2015
;
526
(
7571
):
126
-
130
.
56.
Christodoulou
C
,
Spencer
JA
,
Yeh
S-CA
, et al
.
Live-animal imaging of native hematopoietic stem and progenitor cells
.
Nature
.
2020
;
578
(
7794
):
278
-
283
.
57.
Saçma
M
,
Pospiech
J
,
Bogeska
R
, et al
.
Hematopoietic stem cells in perisinusoidal niches are protected from ageing
.
Nat Cell Biol
.
2019
;
21
(
11
):
1309
-
1320
.
58.
Flores-Figueroa
E
,
Varma
S
,
Montgomery
K
,
Greenberg
PL
,
Gratzinger
D
.
Distinctive contact between CD34+ hematopoietic progenitors and CXCL12+ CD271+ mesenchymal stromal cells in benign and myelodysplastic bone marrow
.
Lab Invest
.
2012
;
92
(
9
):
1330
-
1341
.
59.
Kristensen
HB
,
Andersen
TL
,
Patriarca
A
, et al
.
Human hematopoietic microenvironments
.
PLoS One
.
2021
;
16
(
4
):
e0250081
.
60.
Sarachakov
A
,
Varlamova
A
,
Svekolkin
V
, et al
.
Spatial mapping of human hematopoiesis at single-cell resolution reveals aging-associated topographic remodeling
.
Blood
.
2023
;
142
(
26
):
2282
-
2295
.
61.
Bhatia
M
,
Wang
JC
,
Kapp
U
,
Bonnet
D
,
Dick
JE
.
Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice
.
Proc Natl Acad Sci U S A
.
1997
;
94
(
10
):
5320
-
5325
.
62.
Gomariz
A
,
Helbling
PM
,
Isringhausen
S
, et al
.
Quantitative spatial analysis of hematopoiesis-regulating stromal cells in the bone marrow microenvironment by 3D microscopy
.
Nat Commun
.
2018
;
9
(
1
):
2532
.
63.
Muller-Sieburg
CE
,
Sieburg
HB
,
Bernitz
JM
,
Cattarossi
G
.
Stem cell heterogeneity: implications for aging and regenerative medicine
.
Blood
.
2012
;
119
(
17
):
3900
-
3907
.
64.
Pinho
S
,
Marchand
T
,
Yang
E
,
Wei
Q
,
Nerlov
C
,
Frenette
PS
.
Lineage-biased hematopoietic stem cells are regulated by distinct niches
.
Dev Cell
.
2018
;
44
(
5
):
634
-
641.e4
.
65.
Wilson
A
,
Laurenti
E
,
Oser
G
, et al
.
Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair
.
Cell
.
2008
;
135
(
6
):
1118
-
1129
.
66.
Bernitz
JM
,
Kim
HS
,
MacArthur
B
,
Sieburg
H
,
Moore
K
.
Hematopoietic stem cells count and remember self-renewal divisions
.
Cell
.
2016
;
167
(
5
):
1296
-
1309.e10
.
67.
Cordeiro Gomes
A
,
Hara
T
,
Lim
VY
, et al
.
Hematopoietic stem cell niches produce lineage-instructive signals to control multipotent progenitor differentiation
.
Immunity
.
2016
;
45
(
6
):
1219
-
1231
.
68.
Upadhaya
S
,
Krichevsky
O
,
Akhmetzyanova
I
,
Sawai
CM
,
Fooksman
DR
,
Reizis
B
.
Intravital imaging reveals motility of adult hematopoietic stem cells in the bone marrow niche
.
Cell Stem Cell
.
2020
;
27
(
2
):
336
-
345.e4
.
69.
Baryawno
N
,
Przybylski
D
,
Kowalczyk
MS
, et al
.
A cellular taxonomy of the bone marrow stroma in homeostasis and leukemia
.
Cell
.
2019
;
177
(
7
):
1915
-
1932.e16
.
70.
Tikhonova
AN
,
Dolgalev
I
,
Hu
H
, et al
.
The bone marrow microenvironment at single-cell resolution
.
Nature
.
2019
;
569
(
7755
):
222
-
228
.
71.
Baccin
C
,
Al-Sabah
J
,
Velten
L
, et al
.
Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization
.
Nat Cell Biol
.
2020
;
22
(
1
):
38
-
48
.
72.
Severe
N
,
Karabacak
NM
,
Gustafsson
K
, et al
.
Stress-induced changes in bone marrow stromal resource stress-induced changes in bone marrow stromal cell populations revealed through single-cell protein expression mapping
.
Cell Stem Cell
.
2019
;
25
(
4
):
570
-
583.e7
.
73.
Shen
B
,
Tasdogan
A
,
Ubellacker
JM
, et al
.
A mechanosensitive peri-arteriolar niche for osteogenesis and lymphopoiesis
.
Nature
.
2021
;
591
(
7850
):
438
-
444
.
74.
Chen
Q
,
Liu
Y
,
Jeong
H-W
, et al
.
Apelin+ endothelial niche cells control hematopoiesis and mediate vascular regeneration after myeloablative injury
.
Cell Stem Cell
.
2019
;
25
(
6
):
768
-
783.e6
.
75.
Iga
T
,
Kobayashi
H
,
Kusumoto
D
, et al
.
Spatial heterogeneity of bone marrow endothelial cells unveils a distinct subtype in the epiphysis
.
Nat Cell Biol
.
2023
;
25
(
10
):
1415
-
1425
.
76.
Green
AC
,
Tjin
G
,
Lee
SC
, et al
.
The characterization of distinct populations of murine skeletal cells that have different roles in B lymphopoiesis
.
Blood
.
2021
;
138
(
4
):
304
-
317
.
77.
Zhang
J
,
Wu
Q
,
Johnson
CB
, et al
.
In situ mapping identifies distinct vascular niches for myelopoiesis
.
Nature
.
2021
;
590
(
7846
):
457
-
462
.
78.
Silberstein
L
,
Goncalves
KA
,
Kharchenko
P V
, et al
.
Proximity-based differential single-cell analysis of the niche to identify stem / progenitor cell regulators
.
Cell Stem Cell
.
2016
;
19
(
4
):
530
-
543
.
79.
Young
K
,
Eudy
E
,
Bell
R
, et al
.
Decline in IGF1 in the bone marrow microenvironment initiates hematopoietic stem cell aging
.
Cell Stem Cell
.
2021
;
28
(
8
):
1473
-
1482.e7
.
80.
Ho
TT
,
Dellorusso
PV
,
Verovskaya
EV
, et al
.
Aged hematopoietic stem cells are refractory to bloodborne systemic rejuvenation interventions
.
J Exp Med
.
2021
;
218
(
7
):
e20210223
.
81.
Morrison
SJ
,
Wandycz
AM
,
Akashi
K
,
Globerson
A
,
Weissman
IL
.
The aging of hematopoietic stem cells
.
Nat Med
.
1996
;
2
(
9
):
1011
-
1016
.
82.
Dykstra
B
,
Olthof
S
,
Schreuder
J
,
Ritsema
M
,
de Haan
G
.
Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells
.
J Exp Med
.
2011
;
208
(
13
):
2691
-
2703
.
83.
Yamamoto
R
,
Wilkinson
AC
,
Ooehara
J
, et al
.
Large-scale clonal analysis resolves aging of the mouse hematopoietic stem cell compartment
.
Cell stem cell
.
2018
;
22
(
4
):
600
-
607.e4
.
84.
Pang
WW
,
Price
EA
,
Sahoo
D
, et al
.
Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age
.
Proc Natl Acad Sci U S A
.
2011
;
108
(
50
):
20012
-
20017
.
85.
Rossi
DJ
,
Bryder
D
,
Seita
J
,
Nussenzweig
A
,
Hoeijmakers
J
,
Weissman
IL
.
Deficiencies in DNA damage repair limit the function of hematopoietic stem cells with age
.
Nature
.
2007
;
447
(
7145
):
725
-
729
.
86.
Colom Díaz
PA
,
Mistry
JJ
,
Trowbridge
JJ
.
Hematopoietic stem cell aging and leukemia transformation
.
Blood
.
2023
;
142
(
6
):
533
-
542
.
87.
Ergen
A V
,
Boles
NC
,
Goodell
MA
.
Rantes/Ccl5 influences hematopoietic stem cell subtypes and causes myeloid skewing
.
Blood
.
2012
;
119
(
11
):
2500
-
2509
.
88.
Guidi
N
,
Sacma
M
,
Ständker
L
, et al
.
Osteopontin attenuates aging-associated phenotypes of hematopoietic stem cells
.
EMBO J
.
2017
;
36
(
10
):
1463
. 853.
89.
Kuribayashi
W
,
Oshima
M
,
Itokawa
N
, et al
.
Limited rejuvenation of aged hematopoietic stem cells in young bone marrow niche
.
J Exp Med
.
2021
;
218
(
3
):
e20192283
.
90.
Pietras
EM
,
Mirantes-Barbeito
C
,
Fong
S
, et al
.
Chronic interleukin-1 exposure drives hematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal
.
Nat Cell Biol
.
2016
;
18
(
6
):
607
-
618
.
91.
Mitchell
CA
,
Verovskaya
E V
,
Calero-Nieto
FJ
, et al
.
Stromal niche inflammation mediated by IL-1 signaling is a targetable driver of hematopoietic ageing
.
Nat Cell Biol
.
2023
;
25
(
1
):
30
-
41
.
92.
Singh
P
,
Kacena
MA
,
Orschell
CM
,
Pelus
LM
.
Aging-related reduced expression of CXCR4 on bone marrow mesenchymal stromal cells contributes to hematopoietic stem and progenitor cell defects
.
Stem Cell Rev Rep
.
2020
;
16
(
4
):
684
-
692
.
93.
Kusumbe
AP
,
Ramasamy
SK
,
Itkin
T
, et al
.
Age-dependent modulation of vascular niches for hematopoietic stem cells
.
Nature
.
2016
;
532
(
7599
):
380
-
384
.
94.
Ambrosi
TH
,
Scialdone
A
,
Graja
A
, et al
.
Adipocyte accumulation in the bone marrow during obesity and aging impairs stem cell-based hematopoietic and bone regeneration
.
Cell Stem Cell
.
2017
;
20
(
6
):
771
-
784.e6
.
95.
Maryanovich
M
,
Zahalka
AH
,
Pierce
H
, et al
.
Adrenergic nerve degeneration in bone marrow drives aging of the hematopoietic stem cell niche
.
Nat Med
.
2018
;
24
(
6
):
782
-
791
.
96.
Justesen
J
,
Stenderup
K
,
Ebbesen
EN
,
Mosekilde
L
,
Steiniche
T
,
Kassem
M
.
Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis
.
Biogerontology
.
2001
;
2
(
3
):
165
-
171
.
97.
Naveiras
O
,
Nardi
V
,
Wenzel
PL
,
Hauschka
PV
,
Fahey
F
,
Daley
GQ
.
Bone-marrow adipocytes as negative regulators of the hematopoietic microenvironment
.
Nature
.
2009
;
460
(
7252
):
259
-
263
.
98.
Ambrosi
TH
,
Marecic
O
,
McArdle
A
, et al
.
Aged skeletal stem cells generate an inflammatory degenerative niche
.
Nature
.
2021
;
597
(
7875
):
256
-
262
.
99.
Poulos
MG
,
Ramalingam
P
,
Gutkin
MC
, et al
.
Endothelial transplantation rejuvenates aged hematopoietic stem cell function
.
J Clin Invest
.
2017
;
127
(
11
):
4163
-
4178
.
100.
Ho
Y-H
,
del Toro
R
,
Rivera-Torres
J
, et al
.
Remodeling of bone marrow hematopoietic stem cell niches promotes myeloid cell expansion during premature or physiological aging
.
Cell Stem Cell
.
2019
;
25
(
3
):
407
-
418.e6
.
101.
Ramalingam
P
,
Gutkin
MC
,
Poulos
MG
, et al
.
Restoring bone marrow niche function rejuvenates aged hematopoietic stem cells by reactivating the DNA damage response
.
Nat Commun
.
2023
;
14
(
1
):
2018
.
102.
Valletta
S
,
Thomas
A
,
Meng
Y
, et al
.
Micro-environmental sensing by bone marrow stroma identifies IL-6 and TGFβ1 as regulators of hematopoietic ageing
.
Nat Commun
.
2020
;
11
(
1
):
4075
.
103.
Kovtonyuk
LV
,
Caiado
F
,
Garcia-Martin
S
, et al
.
IL-1 mediates microbiome-induced inflammaging of hematopoietic stem cells in mice
.
Blood
.
2022
;
139
(
1
):
44
-
58
.
104.
Zeng
X
,
Li
X
,
Li
X
, et al
.
Fecal microbiota transplantation from young mice rejuvenates aged hematopoietic stem cells by suppressing inflammation
.
Blood
.
2023
;
141
(
14
):
1691
-
1707
.
105.
Piryani
SO
,
Kam
AYF
,
Kliassov
EG
, et al
.
Epidermal growth factor and granulocyte colony stimulating factor signaling are synergistic for hematopoietic regeneration
.
Stem Cells
.
2018
;
36
(
2
):
252
-
264
.
106.
Hérault
A
,
Binnewies
M
,
Leong
S
, et al
.
Myeloid progenitor cluster formation drives emergency and leukemic myelopoiesis
.
Nature
.
2017
;
544
(
7648
):
53
-
58
.
107.
Kopp
H-G
,
Avecilla
ST
,
Hooper
AT
, et al
.
Tie2 activation contributes to hemangiogenic regeneration after myelosuppression
.
Blood
.
2005
;
106
(
2
):
505
-
513
.
108.
Lucas
D
,
Scheiermann
C
,
Chow
A
, et al
.
Chemotherapy-induced bone marrow nerve injury impairs hematopoietic regeneration
.
Nat Med
.
2013
;
19
(
6
):
695
-
703
.
109.
Sudo
T
,
Motomura
Y
,
Okuzaki
D
, et al
.
Group 2 innate lymphoid cells support hematopoietic recovery under stress conditions
.
J Exp Med
.
2021
;
218
(
5
):
e20200817
.
110.
Brenet
F
,
Kermani
P
,
Spektor
R
,
Rafii
S
,
Scandura
JM
.
TGFβ restores hematopoietic homeostasis after myelosuppressive chemotherapy
.
J Exp Med
.
2013
;
210
(
3
):
623
-
639
.
111.
Termini
CM
,
Pang
A
,
Fang
T
, et al
.
Neuropilin 1 regulates bone marrow vascular regeneration and hematopoietic reconstitution
.
Nat Commun
.
2021
;
12
(
1
):
6990
.
112.
Harada
K
,
Yahata
T
,
Onizuka
M
, et al
.
Plasminogen activator inhibitor type-1 is a negative regulator of hematopoietic regeneration in the adipocyte-rich bone marrow microenvironment
.
Biochem Biophys Res Commun
.
2021
;
557
:
180
-
186
.
113.
Bogeska
R
,
Mikecin
A-M
,
Kaschutnig
P
, et al
.
Inflammatory exposure drives long-lived impairment of hematopoietic stem cell self-renewal activity and accelerated aging
.
Cell Stem Cell
.
2022
;
29
(
8
):
1273
-
1284.e8
.
114.
Kasbekar
M
,
Mitchell
CA
,
Proven
MA
,
Passegué
E
.
Hematopoietic stem cells through the ages: a lifetime of adaptation to organismal demands
.
Cell Stem Cell
.
2023
;
30
(
11
):
1403
-
1420
.
115.
Hooper
AT
,
Butler
JM
,
Nolan
DJ
, et al
.
Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells
.
Cell Stem Cell
.
2009
;
4
(
3
):
263
-
274
.
116.
Poulos
MG
,
Guo
P
,
Kofler
NM
, et al
.
Endothelial jagged-1 is necessary for homeostatic and regenerative hematopoiesis
.
Cell Rep
.
2013
;
4
(
5
):
1022
-
1034
.
117.
Gerber
H-P
,
Malik
AK
,
Solar
GP
, et al
.
VEGF regulates hematopoietic stem cell survival by an internal autocrine loop mechanism
.
Nature
.
2002
;
417
(
6892
):
954
-
958
.
118.
Bowers
E
,
Slaughter
A
,
Frenette
PS
,
Kuick
R
,
Pello
OM
,
Lucas
D
.
Granulocyte-derived TNFα promotes vascular and hematopoietic regeneration in the bone marrow
.
Nat Med
.
2018
;
24
(
1
):
95
-
102
.
119.
Fang
S
,
Chen
S
,
Nurmi
H
, et al
.
VEGF-C protects the integrity of the bone marrow perivascular niche in mice
.
Blood
.
2020
;
136
(
16
):
1871
-
1883
.
120.
Kenswil
KJG
,
Jaramillo
AC
,
Ping
Z
, et al
.
Characterization of endothelial cells associated with hematopoietic niche formation in humans identifies IL-33 as an anabolic factor
.
Cell Rep
.
2018
;
22
(
3
):
666
-
678
.
121.
Nicolay
NH
,
Sommer
E
,
Lopez
R
, et al
.
Mesenchymal stem cells retain their defining stem cell characteristics after exposure to ionizing radiation
.
Int J Radiat Oncol Biol Phys
.
2013
;
87
(
5
):
1171
-
1178
.
122.
Golan
K
,
Singh
AK
,
Kollet
O
, et al
.
Bone marrow regeneration requires mitochondrial transfer from donor Cx43-expressing hematopoietic progenitors to stroma
.
Blood
.
2020
;
136
(
23
):
2607
-
2619
.
123.
Gao
X
,
Murphy
MM
,
Peyer
JG
, et al
.
Leptin receptor+ cells promote bone marrow innervation and regeneration by synthesizing nerve growth factor
.
Nat Cell Biol
.
2023
;
25
(
12
):
1746
-
1757
.
124.
Schloss
MJ
,
Hulsmans
M
,
Rohde
D
, et al
.
B lymphocyte-derived acetylcholine limits steady-state and emergency hematopoiesis
.
Nat Immunol
.
2022
;
23
(
4
):
605
-
618
.
125.
Méndez-Ferrer
S
,
Lucas
D
,
Battista
M
,
Frenette
PS
.
Hematopoietic stem cell release is regulated by circadian oscillations
.
Nature
.
2008
;
452
(
7186
):
442
-
447
.
126.
Cavaletti
G
,
Marmiroli
P
.
Chemotherapy-induced peripheral neurotoxicity
.
Nat Rev Neurol
.
2010
;
6
(
12
):
657
-
666
.
127.
Fielding
C
,
García-García
A
,
Korn
C
, et al
.
Cholinergic signals preserve hematopoietic stem cell quiescence during regenerative hematopoiesis
.
Nat Commun
.
2022
;
13
(
1
):
543
.
128.
Dranoff
G
,
Crawford
AD
,
Sadelain
M
, et al
.
Involvement of granulocyte-macrophage colony-stimulating factor in pulmonary homeostasis
.
Science
.
1994
;
264
(
5159
):
713
-
716
.
129.
Biswas
L
,
Chen
J
,
De Angelis
J
, et al
.
Lymphatic vessels in bone support regeneration after injury
.
Cell
.
2023
;
186
(
2
):
382
-
397.e24
.
130.
Yoshihara
H
,
Arai
F
,
Hosokawa
K
, et al
.
Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche
.
Cell
.
2007
;
1
(
6
):
685
-
697
.
131.
Gao
L
,
Decker
M
,
Chen
H
,
Ding
L
.
Thrombopoietin from hepatocytes promotes hematopoietic stem cell regeneration after myeloablation
.
Elife
.
2021
;
10
:
e69894
.
132.
Zhao
M
,
Tao
F
,
Venkatraman
A
, et al
.
N-cadherin-expressing bone and marrow stromal progenitor cells maintain reserve hematopoietic stem cells
.
Cell Rep
.
2019
;
26
(
3
):
652
-
669.e6
.
133.
Zhou
BO
,
Yu
H
,
Yue
R
, et al
.
Bone marrow adipocytes promote the regeneration of stem cells and hematopoiesis by secreting SCF
.
Nat Cell Biol
.
2017
;
19
(
8
):
891
-
903
.
134.
Hirakawa
H
,
Gao
L
,
Tavakol
DN
,
Vunjak-Novakovic
G
,
Ding
L
.
Cellular plasticity of the bone marrow niche promotes hematopoietic stem cell regeneration
.
Nat Genet
.
2023
;
55
(
11
):
1941
-
1952
.
135.
Khan
AO
,
Rodriguez-Romera
A
,
Reyat
JS
, et al
.
Human bone marrow organoids for disease modeling, discovery, and validation of therapeutic targets in hematologic malignancies
.
Cancer Discov
.
2023
;
13
(
2
):
364
-
385
.
You do not currently have access to this content.
Sign in via your Institution