• Platelet-derived TGF-β1 modulates MDSC function and profiling via TGF-β/Smad pathway in ITP.

  • Beyond an indicator of treatment response, platelet TGF-β paves the way for immune homeostasis in immune-mediated thrombocytopenia.

Abstract

Platelet α-granules are rich in transforming growth factor β1 (TGF-β1), which is associated with myeloid-derived suppressor cell (MDSC) biology. Responders to thrombopoietin receptor agonists (TPO-RAs) revealed a parallel increase in the number of both platelets and MDSCs. Here, anti-CD61 immune-sensitized splenocytes were transferred into severe combined immunodeficient mice to establish an active murine model of immune thrombocytopenia (ITP). Subsequently, we demonstrated that TPO-RAs augmented the inhibitory activities of MDSCs by arresting plasma cells differentiation, reducing Fas ligand expression on cytotoxic T cells, and rebalancing T-cell subsets. Mechanistically, transcriptome analysis confirmed the participation of TGF-β/Smad pathways in TPO-RA–corrected MDSCs, which was offset by Smad2/3 knockdown. In platelet TGF-β1–deficient mice, TPO-RA-induced amplification and enhanced suppressive capacity of MDSCs was waived. Furthermore, our retrospective data revealed that patients with ITP achieving complete platelet response showed superior long-term outcomes compared with those who only reach partial response. In conclusion, we demonstrate that platelet TGF-β1 induces the expansion and functional reprogramming of MDSCs via the TGF-β/Smad pathway. These data indicate that platelet recovery not only serves as an end point of treatment response but also paves the way for immune homeostasis in immune-mediated thrombocytopenia.

1.
Maouia
A
,
Rebetz
J
,
Kapur
R
,
Semple
JW
.
The immune nature of platelets revisited
.
Transfus Med Rev
.
2020
;
34
(
4
):
209
-
220
.
2.
Cunin
P
,
Nigrovic
PA
.
Megakaryocytes as immune cells
.
J Leukoc Biol
.
2019
;
105
(
6
):
1111
-
1121
.
3.
Zufferey
A
,
Speck
ER
,
Machlus
KR
, et al
.
Mature murine megakaryocytes present antigen-MHC class I molecules to T cells and transfer them to platelets
.
Blood Adv
.
2017
;
1
(
20
):
1773
-
1785
.
4.
Assoian
RK
,
Komoriya
A
,
Meyers
CA
,
Miller
DM
,
Sporn
MB
.
Transforming growth factor-beta in human platelets. Identification of a major storage site, purification, and characterization
.
J Biol Chem
.
1983
;
258
(
11
):
7155
-
7160
.
5.
Zhu
Y
,
Shu
D
,
Gong
X
, et al
.
Platelet-derived TGF (transforming growth factor)-beta1 enhances the aerobic glycolysis of pulmonary arterial smooth muscle cells by PKM2 (pyruvate kinase muscle isoform 2) upregulation
.
Hypertension
.
2022
;
79
(
5
):
932
-
945
.
6.
He
A
,
Wang
S
,
Xie
W
, et al
.
Platelet derived TGF-β promotes cervical carcinoma cell growth by suppressing KLF6 expression
.
Oncotarget
.
2017
;
8
(
50
):
87174
-
87181
.
7.
Batlle
E
,
Massagué
J
.
Transforming growth factor-β signaling in immunity and cancer
.
Immunity
.
2019
;
50
(
4
):
924
-
940
.
8.
Cuende
J
,
Liénart
S
,
Dedobbeleer
O
, et al
.
Monoclonal antibodies against GARP/TGF-β1 complexes inhibit the immunosuppressive activity of human regulatory T cells in vivo
.
Sci Transl Med
.
2015
;
7
(
284
):
284ra56
.
9.
Lodyga
M
,
Hinz
B
.
TGF-β1-a truly transforming growth factor in fibrosis and immunity
.
Semin Cell Dev Biol
.
2020
;
101
:
123
-
139
.
10.
Kulkarni
A
,
Huh
C
,
Becker
D
, et al
.
Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death
.
Proc Natl Acad Sci U S A
.
1993
;
90
(
2
):
770
-
774
.
11.
Chen
W
.
TGF-β regulation of T cells
.
Annu Rev Immunol
.
2023
;
41
:
483
-
512
.
12.
Budi
E
,
Duan
D
,
Derynck
R
.
Transforming growth factor-β receptors and Smads: regulatory complexity and functional versatility
.
Trends Cell Biol
.
2017
;
27
(
9
):
658
-
672
.
13.
Derynck
R
,
Budi
EH
.
Specificity, versatility, and control of TGF-beta family signaling
.
Sci Signal
.
2019
;
12
(
570
):
eaav5183
.
14.
Bronte
V
,
Brandau
S
,
Chen
S
, et al
.
Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards
.
Nat Commun
.
2016
;
7
:
12150
.
15.
Veglia
F
,
Perego
M
,
Gabrilovich
D
.
Myeloid-derived suppressor cells coming of age
.
Nat Immunol
.
2018
;
19
(
2
):
108
-
119
.
16.
Nagaraj
S
,
Youn
J
,
Gabrilovich
D
.
Reciprocal relationship between myeloid-derived suppressor cells and T cells
.
J Immunol
.
2013
;
191
(
1
):
17
-
23
.
17.
Nourbakhsh
E
,
Mohammadi
A
,
Salemizadeh Parizi
M
,
Mansouri
A
,
Ebrahimzadeh
F
.
Role of myeloid-derived suppressor cell (MDSC) in autoimmunity and its potential as a therapeutic target
.
Inflammopharmacology
.
2021
;
29
(
5
):
1307
-
1315
.
18.
Lee
C-R
,
Lee
W
,
Cho
SK
,
Park
S-G
.
Characterization of multiple cytokine combinations and TGF-β on differentiation and functions of myeloid-derived suppressor cells
.
Int J Mol Sci
.
2018
;
19
(
3
):
869
.
19.
Cao
P
,
Sun
Z
,
Zhang
F
, et al
.
TGF-β enhances immunosuppression of myeloid-derived suppressor cells to induce transplant immune tolerance through affecting Arg-1 expression
.
Front Immunol
.
2022
;
13
:
919674
.
20.
Bronte
V
,
Zanovello
P
.
Regulation of immune responses by L-arginine metabolism
.
Nat Rev Immunol
.
2005
;
5
(
8
):
641
-
654
.
21.
Highfill
SL
,
Rodriguez
PC
,
Zhou
Q
, et al
.
Bone marrow myeloid-derived suppressor cells (MDSCs) inhibit graft-versus-host disease (GVHD) via an arginase-1-dependent mechanism that is up-regulated by interleukin-13
.
Blood
.
2010
;
116
(
25
):
5738
-
5747
.
22.
Cassetta
L
,
Baekkevold
E
,
Brandau
S
, et al
.
Deciphering myeloid-derived suppressor cells: isolation and markers in humans, mice and non-human primates
.
Cancer Immunol Immunother
.
2019
;
68
(
4
):
687
-
697
.
23.
Bruger
A
,
Dorhoi
A
,
Esendagli
G
, et al
.
How to measure the immunosuppressive activity of MDSC: assays, problems and potential solutions
.
Cancer Immunol Immunother
.
2019
;
68
(
4
):
631
-
644
.
24.
Neunert
C
,
Terrell
DR
,
Arnold
DM
, et al
.
American Society of Hematology 2019 guidelines for immune thrombocytopenia
.
Blood Adv
.
2019
;
3
(
23
):
3829
-
3866
.
25.
Hou
Y
,
Feng
Q
,
Xu
M
, et al
.
High-dose dexamethasone corrects impaired myeloid-derived suppressor cell function via Ets1 in immune thrombocytopenia
.
Blood
.
2016
;
127
(
12
):
1587
-
1597
.
26.
Ni
X
,
Wang
L
,
Wang
H
, et al
.
Low-dose decitabine modulates myeloid-derived suppressor cell fitness via LKB1 in immune thrombocytopenia
.
Blood
.
2022
;
140
(
26
):
2818
-
2834
.
27.
Hou
Y
,
Xie
J
,
Wang
S
, et al
.
Glucocorticoid receptor modulates myeloid-derived suppressor cell function via mitochondrial metabolism in immune thrombocytopenia
.
Cell Mol Immunol
.
2022
;
19
(
7
):
764
-
776
.
28.
Kang
SY
,
Yoo
JR
,
Park
Y
, et al
.
Fatal outcome of severe fever with thrombocytopenia syndrome (SFTS) and severe and critical COVID-19 is associated with the hyperproduction of IL-10 and IL-6 and the low production of TGF-β
.
J Med Virol
.
2023
;
95
(
7
):
e28894
.
29.
Andersson
PO
,
Olsson
A
,
Wadenvik
H
.
Reduced transforming growth factor-β1 production by mononuclear cells from patients with active chronic idiopathic thrombocytopenic purpura
.
Br J Haematol
.
2002
;
116
(
4
):
862
-
867
.
30.
Wang
X
,
Li
F
,
Li
Y
, et al
.
Decreased levels of immune-regulatory cytokines in patients with immune thrombocytopenia and long-lasting overexpression of these cytokines in the splenectomized patients
.
J Leukoc Biol
.
2021
;
110
(
2
):
335
-
341
.
31.
Bao
W
,
Bussel
JB
,
Heck
S
, et al
.
Improved regulatory T-cell activity in patients with chronic immune thrombocytopenia treated with thrombopoietic agents
.
Blood
.
2010
;
116
(
22
):
4639
-
4645
.
32.
Andersson
PO
,
Stockelberg
D
,
Jacobsson
S
,
Wadenvik
H
.
A transforming growth factor-beta1-mediated bystander immune suppression could be associated with remission of chronic idiopathic thrombocytopenic purpura
.
Ann Hematol
.
2000
;
79
(
9
):
507
-
513
.
33.
Provan
D
,
Arnold
DM
,
Bussel
JB
, et al
.
Updated international consensus report on the investigation and management of primary immune thrombocytopenia
.
Blood Adv
.
2019
;
3
(
22
):
3780
-
3817
.
34.
Thrombosis and Hemostasis Group Chinese Society of Hematology Chinese Medical Association
.
Chinese guideline on the diagnosis and management of adult primary immune thrombocytopenia (version 2020) [in Chinese]
.
Zhonghua Xue Ye Xue Za Zhi
.
2020
;
41
(
8
):
617
-
623
.
35.
Ghanima
W
,
Cooper
N
,
Rodeghiero
F
,
Godeau
B
,
Bussel
JB
.
Thrombopoietin receptor agonists: ten years later
.
Haematologica
.
2019
;
104
(
6
):
1112
-
1123
.
36.
Semple
JW
,
Kapur
R
.
Platelet immunology from the inside out
.
ISBT Sci Ser
.
2020
;
15
(
3
):
315
-
319
.
37.
Nishimoto
T
,
Numajiri
M
,
Nakazaki
H
,
Okazaki
Y
,
Kuwana
M
.
Induction of immune tolerance to platelet antigen by short-term thrombopoietin treatment in a mouse model of immune thrombocytopenia
.
Int J Hematol
.
2014
;
100
(
4
):
341
-
344
.
38.
Li
X
,
Zhong
H
,
Bao
W
, et al
.
Defective regulatory B-cell compartment in patients with immune thrombocytopenia
.
Blood
.
2012
;
120
(
16
):
3318
-
3325
.
39.
Liu
XG
,
Liu
S
,
Feng
Q
, et al
.
Thrombopoietin receptor agonists shift the balance of Fcgamma receptors toward inhibitory receptor IIb on monocytes in ITP
.
Blood
.
2016
;
128
(
6
):
852
-
861
.
40.
Schifferli
A
,
Kühne
T
.
Thrombopoietin receptor agonists: a new immune modulatory strategy in immune thrombocytopenia?
.
Semin Hematol
.
2016
;
53
(
suppl 1
):
S31
-
S34
.
41.
Qu
MM
,
Liu
XN
,
Liu
XG
, et al
.
Cytokine changes in response to TPO receptor agonist treatment in primary immune thrombocytopenia
.
Cytokine
.
2017
;
92
:
110
-
117
.
42.
Zhang
H
,
Zhang
BM
,
Guo
X
, et al
.
Blood transcriptome and clonal T-cell correlates of response and non-response to eltrombopag therapy in a cohort of patients with chronic immune thrombocytopenia
.
Haematologica
.
2020
;
105
(
3
):
e129
-
e132
.
43.
Chow
L
,
Aslam
R
,
Speck
ER
, et al
.
A murine model of severe immune thrombocytopenia is induced by antibody- and CD8+ T cell-mediated responses that are differentially sensitive to therapy
.
Blood
.
2010
;
115
(
6
):
1247
-
1253
.
44.
Cines
D
,
Yasothan
U
,
Kirkpatrick
P
.
Romiplostim
.
Nat Rev Drug Discov
.
2008
;
7
(
11
):
887
-
888
.
45.
Elzey
B
,
Tian
J
,
Jensen
R
, et al
.
Platelet-mediated modulation of adaptive immunity. A communication link between innate and adaptive immune compartments
.
Immunity
.
2003
;
19
(
1
):
9
-
19
.
46.
Nicolai
L
,
Leunig
A
,
Pekayvaz
K
, et al
.
Thrombocytopenia and splenic platelet-directed immune responses after IV ChAdOx1 nCov-19 administration
.
Blood
.
2022
;
140
(
5
):
478
-
490
.
47.
Koupenova
M
,
Livada
A
,
Morrell
C
.
Platelet and megakaryocyte roles in innate and adaptive immunity
.
Circ Res
.
2022
;
130
(
2
):
288
-
308
.
48.
Yang
M
,
Jiang
H
,
Ding
C
, et al
.
STING activation in platelets aggravates septic thrombosis by enhancing platelet activation and granule secretion
.
Immunity
.
2023
;
56
(
5
):
1013
-
1026.e6
.
49.
Metelli
A
,
Wu
BX
,
Riesenberg
B
, et al
.
Thrombin contributes to cancer immune evasion via proteolysis of platelet-bound GARP to activate LTGF-β
.
Sci Transl Med
.
2020
;
12
(
525
):
eaay4860
.
50.
Yaswen
L
,
Kulkarni
A
,
Fredrickson
T
, et al
.
Autoimmune manifestations in the transforming growth factor-beta 1 knockout mouse
.
Blood
.
1996
;
87
(
4
):
1439
-
1445
.
51.
Varga
J
,
Pasche
B
.
Transforming growth factor beta as a therapeutic target in systemic sclerosis
.
Nat Rev Rheumatol
.
2009
;
5
(
4
):
200
-
206
.
52.
Ali
H
,
Alubaidi
G
,
Gorial
F
,
Jasim
I
.
Disturbance in serum levels of IL-17 and TGF-β1 and in gene expression of ROR-γt and FOX-P3 is associated with pathogenicity of systematic lupus erythematosus
.
Prague Med Rep
.
2022
;
123
(
3
):
166
-
180
.
53.
Kotlarz
D
,
Marquardt
B
,
Barøy
T
, et al
.
Human TGF-β1 deficiency causes severe inflammatory bowel disease and encephalopathy
.
Nat Genet
.
2018
;
50
(
3
):
344
-
348
.
54.
Ahmadi
J
,
Hosseini
E
,
Kargar
F
,
Ghasemzadeh
M
.
Stable CAD patients show higher levels of platelet-borne TGF-β1 associated with a superior pro-inflammatory state than the pro-aggregatory status; evidence highlighting the importance of platelet-derived TGF-β1 in atherosclerosis
.
J Thromb Thrombolysis
.
2023
;
55
(
1
):
102
-
115
.
55.
Wang
W
,
Vootukuri
S
,
Meyer
A
,
Ahamed
J
,
Coller
B
.
Association between shear stress and platelet-derived transforming growth factor-β1 release and activation in animal models of aortic valve stenosis
.
Arterioscler Thromb Vasc Biol
.
2014
;
34
(
9
):
1924
-
1932
.
56.
Guo
S
,
Du
Y
,
Liu
X
.
Platelet-derived TGF-β1 mediates the down-modulation of NKG2D expression and may be responsible for impaired natural killer (NK) cytotoxicity in women with endometriosis
.
Hum Reprod
.
2016
;
31
(
7
):
1462
-
1474
.
57.
Veglia
F
,
Sanseviero
E
,
Gabrilovich
D
.
Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity
.
Nat Rev Immunol
.
2021
;
21
(
8
):
485
-
498
.
58.
Hegde
S
,
Leader
AM
,
Merad
M
.
MDSC: markers, development, states, and unaddressed complexity
.
Immunity
.
2021
;
54
(
5
):
875
-
884
.
59.
Yazdanbakhsh
K
,
Provan
D
,
Semple
JW
.
The role of T cells and myeloid-derived suppressor cells in refractory immune thrombocytopenia
.
Br J Haematol
.
2023
;
203
(
1
):
54
-
61
.
60.
Gabrilovich
DI
,
Nagaraj
S
.
Myeloid-derived suppressor cells as regulators of the immune system
.
Nat Rev Immunol
.
2009
;
9
(
3
):
162
-
174
.
61.
Kusmartsev
S
,
Nefedova
Y
,
Yoder
D
,
Gabrilovich
DI
.
Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species
.
J Immunol
.
2004
;
172
(
2
):
989
-
999
.
62.
Nagaraj
S
,
Gupta
K
,
Pisarev
V
, et al
.
Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer
.
Nat Med
.
2007
;
13
(
7
):
828
-
835
.
63.
Zhu
L
,
Huang
Z
,
Stålesen
R
,
Hansson
GK
,
Li
N
.
Platelets provoke distinct dynamics of immune responses by differentially regulating CD4+ T-cell proliferation
.
J Thromb Haemostasis
.
2014
;
12
(
7
):
1156
-
1165
.
64.
Liu
CY
,
Battaglia
M
,
Lee
SH
,
Sun
Q-H
,
Aster
RH
,
Visentin
GP
.
Platelet factor 4 differentially modulates CD4+CD25+ (regulatory) versus CD4+CD25− (nonregulatory) T cells
.
J Immunol
.
2005
;
174
(
5
):
2680
-
2686
.
65.
Min
Y
,
Hao
L
,
Liu
X
, et al
.
Platelets fine-tune effector responses of naïve CD4+ T cells via platelet factor 4-regulated transforming growth factor β signaling
.
Cell Mol Life Sci
.
2022
;
79
(
5
):
247
.
66.
Tan
S
,
Zhang
J
,
Sun
Y
, et al
.
Platelets enhance CD4+ central memory T cell responses via platelet factor 4-dependent mitochondrial biogenesis and cell proliferation
.
Platelets
.
2022
;
33
(
3
):
360
-
370
.
67.
Tan
S
,
Li
S
,
Min
Y
, et al
.
Platelet factor 4 enhances CD4+ T effector memory cell responses via Akt-PGC1α-TFAM signaling-mediated mitochondrial biogenesis
.
J Thromb Haemostasis
.
2020
;
18
(
10
):
2685
-
2700
.
68.
Cheng
G
,
Saleh
MN
,
Marcher
C
, et al
.
Eltrombopag for management of chronic immune thrombocytopenia (RAISE): a 6-month, randomised, phase 3 study
.
Lancet
.
2011
;
377
(
9763
):
393
-
402
.
69.
Saleh
M
,
Bussel
J
,
Cheng
G
, et al
.
Safety and efficacy of eltrombopag for treatment of chronic immune thrombocytopenia: results of the long-term, open-label EXTEND study
.
Blood
.
2013
;
121
(
3
):
537
-
545
.
70.
Khellaf
M
,
Michel
M
,
Quittet
P
, et al
.
Romiplostim safety and efficacy for immune thrombocytopenia in clinical practice: 2-year results of 72 adults in a romiplostim compassionate-use program
.
Blood
.
2011
;
118
(
16
):
4338
-
4345
.
71.
Lucchini
E
,
Palandri
F
,
Volpetti
S
, et al
.
Eltrombopag second-line therapy in adult patients with primary immune thrombocytopenia in an attempt to achieve sustained remission off-treatment: results of a phase II, multicentre, prospective study
.
Br J Haematol
.
2021
;
193
(
2
):
386
-
396
.
72.
Newland
A
,
Godeau
B
,
Priego
V
, et al
.
Remission and platelet responses with romiplostim in primary immune thrombocytopenia: final results from a phase 2 study
.
Br J Haematol
.
2016
;
172
(
2
):
262
-
273
.
73.
Kapur
R
,
Aslam
R
,
Speck
ER
,
Rebetz
JM
,
Semple
JW
.
Thrombopoietin receptor agonist (TPO-RA) treatment raises platelet counts and reduces anti-platelet antibody levels in mice with immune thrombocytopenia (ITP)
.
Platelets
.
2020
;
31
(
3
):
399
-
402
.
74.
Chapman
LM
,
Aggrey
AA
,
Field
DJ
, et al
.
Platelets present antigen in the context of MHC class I
.
J Immunol
.
2012
;
189
(
2
):
916
-
923
.
75.
Agrati
C
,
Sacchi
A
,
Bordoni
V
, et al
.
Expansion of myeloid-derived suppressor cells in patients with severe coronavirus disease (COVID-19)
.
Cell Death Differ
.
2020
;
27
(
11
):
3196
-
3207
.
76.
Guo
L
,
Yang
L
,
Speck
ER
, et al
.
Allogeneic platelet transfusions prevent murine T-cell–mediated immune thrombocytopenia
.
Blood
.
2014
;
123
(
3
):
422
-
427
.
77.
Kuter
D
,
Gminski
D
,
Rosenberg
R
.
Transforming growth factor beta inhibits megakaryocyte growth and endomitosis
.
Blood
.
1992
;
79
(
3
):
619
-
626
.
78.
Sakamaki
S
,
Hirayama
Y
,
Matsunaga
T
, et al
.
Transforming growth factor-beta1 (TGF-beta1) induces thrombopoietin from bone marrow stromal cells, which stimulates the expression of TGF-beta receptor on megakaryocytes and, in turn, renders them susceptible to suppression by TGF-beta itself with high specificity
.
Blood
.
1999
;
94
(
6
):
1961
-
1970
.
79.
Liu
XG
,
Bai
XC
,
Chen
FP
, et al
.
Chinese guidelines for treatment of adult primary immune thrombocytopenia
.
Int J Hematol
.
2018
;
107
(
6
):
615
-
623
.
You do not currently have access to this content.
Sign in via your Institution