• RBCs promote fibrin formation and hemostasis in mice in the condition of severe pancytopenia.

  • Altering RBC membrane deformability interferes with the ability of RBCs to support platelet aggregation in vitro.

Abstract

Red blood cells (RBCs) have been hypothesized to support hemostasis by facilitating platelet margination and releasing platelet-activating factors such as adenosine 5′-diphosphate (ADP). Significant knowledge gaps remain regarding how RBCs influence platelet function, especially in (patho)physiologically relevant hemodynamic conditions. Here, we present results showing how RBCs affect platelet function and hemostasis in conditions of anemia, thrombocytopenia, and pancytopenia and how the biochemical and biophysical properties of RBCs regulate platelet function at the blood and vessel wall interface and in the fluid phase under flow conditions. We found that RBCs promoted platelet deposition to collagen under flow conditions in moderate (50 × 103/μL) but not severe (10 × 103/μL) thrombocytopenia in vitro. Reduction in hematocrit by 45% increased bleeding in mice with hemolytic anemia. In contrast, bleeding diathesis was observed in mice with a 90% but not with a 60% reduction in platelet counts. RBC transfusion improved hemostasis by enhancing fibrin clot formation at the site of vascular injury in mice with severe pancytopenia induced by total body irradiation. Altering membrane deformability changed the ability of RBCs to promote shear-induced platelet aggregation. RBC-derived ADP contributed to platelet activation and aggregation in vitro under pathologically high shear stresses, as observed in patients supported by left ventricular assist devices. These findings demonstrate that RBCs support platelet function and hemostasis through multiple mechanisms, both at the blood and vessel wall interface and in the fluidic phase of circulation.

1.
Livio
M
,
Marchesi
D
,
Remuzzi
G
,
Mecca
G
,
Remuzzi
G
,
de Gaetano
G
.
Uraemic bleeding: role of anaemia and beneficial effect of red cell transfusions
.
Lancet
.
1982
;
2
(
8306
):
1013
-
1015
.
2.
Valeri
CR
,
Cassidy
G
,
Pivacek
LE
, et al
.
Anemia-induced increase in the bleeding time: implications for treatment of nonsurgical blood loss
.
Transfusion (Paris)
.
2001
;
41
(
8
):
977
-
983
.
3.
Crowley
JP
,
Metzger
JB
,
Robert Valeri
C
.
The volume of blood shed during the bleeding time correlates with the peripheral venous hematocrit
.
Am J Clin Pathol
.
1997
;
108
(
5
):
579
-
584
.
4.
Ho
CH
.
The hemostatic effect of packed red cell transfusion in patients with anemia
.
Transfusion (Paris)
.
1998
;
38
(
11-12
):
1011
-
1014
.
5.
Hung
Ho C
.
Increase of red blood cells can shorten the bleeding time in patients with iron deficiency anemia
.
Blood
.
1998
;
91
(
3
):
1094
.
6.
Valles
J
,
Santos
MT
,
Aznar
J
, et al
.
Erythrocytes metabolically enhance collagen-induced platelet responsiveness via increased thromboxane production, adenosine diphosphate release, and recruitment
.
Blood
.
1991
;
78
(
1
):
154
-
162
.
7.
Alkhamis
TM
,
Beissinger
RL
,
Chediak
JR
.
Artificial surface effect on red blood cells and platelets in laminar shear flow
.
Blood
.
1990
;
75
(
7
):
1568
-
1575
.
8.
Klatt
C
,
Krüger
I
,
Zey
S
, et al
.
Platelet-RBC interaction mediated by FasL/FasR induces procoagulant activity important for thrombosis
.
J Clin Invest
.
2018
;
128
(
9
):
3906
-
3925
.
9.
Du
VX
,
Huskens
D
,
Maas
C
,
Al Dieri
R
,
de Groot
PG
,
de Laat
B
.
New insights into the role of erythrocytes in thrombus formation
.
Semin Thromb Hemost
.
2014
;
40
(
1
):
72
-
80
.
10.
Aleman
MM
,
Byrnes
JR
,
Wang
JG
, et al
.
Factor XIII activity mediates red blood cell retention in venous thrombi
.
J Clin Invest
.
2014
;
124
(
8
):
3590
-
3600
.
11.
Zecher
D
,
Cumpelik
A
,
Schifferli
JA
.
Erythrocyte-derived microvesicles amplify systemic inflammation by thrombin-dependent activation of complement
.
Arterioscler Thromb Vasc Biol
.
2014
;
34
(
2
):
313
-
320
.
12.
Dasgupta
SK
,
Abdel-Monem
H
,
Guchhait
P
,
Nagata
S
,
Thiagarajan
P
.
Role of lactadherin in the clearance of phosphatidylserine-expressing red blood cells
.
Transfusion (Paris)
.
2008
;
48
(
11
):
2370
-
2376
.
13.
Turitto
VT
,
Baumgartner
HR
.
Platelet interaction with subendothelium in a perfusion system: physical role of red blood cells
.
Microvasc Res
.
1975
;
9
(
3
):
335
-
344
.
14.
Turitto
VT
,
Weiss
HJ
.
Red blood cells: Their dual role in thrombus formation
.
Science
.
1980
;
207
(
4430
):
541
-
543
.
15.
Escolar
G
,
Garrido
M
,
Mazzara
R
,
Castillo
R
,
Ordinas
A
.
Experimental basis for the use of red cell transfusion in the management of anemic-thrombocytopenic patients
.
Transfusion (Paris)
.
1988
;
28
(
5
):
406
-
411
.
16.
Chen
H
,
Angerer
JI
,
Napoleone
M
, et al
.
Hematocrit and flow rate regulate the adhesion of platelets to von Willebrand factor
.
Biomicrofluidics
.
2013
;
7
(
6
):
64113
.
17.
Spann
AP
,
Campbell
JE
,
Fitzgibbon
SR
, et al
.
The effect of hematocrit on platelet adhesion: experiments and simulations
.
Biophys J
.
2016
;
111
(
3
):
577
-
588
.
18.
Fogelson
AL
,
Neeves
KB
.
Fluid mechanics of blood clot formation
.
Annu Rev Fluid Mech
.
2015
;
47
:
377
-
403
.
19.
Tokarev
AA
,
Butylin
AA
,
Ermakova
EA
,
Shnol
EE
,
Panasenko
GP
,
Ataullakhanov
FI
.
Finite platelet size could be responsible for platelet margination effect
.
Biophys J
.
2011
;
101
(
8
):
1835
-
1843
.
20.
Uijttewaal
WSJ
,
Nijhof
EJ
,
Bronkhorst
PJH
,
Den Hartog
E
,
Heethaar
RM
.
Near-wall excess of platelets induced by lateral migration of erythrocytes in flowing blood
.
Am J Physiol
.
1993
;
264
(
4 Pt 2
):
H1239
-
H1244
.
21.
Tilles
AW
,
Eckstein
EC
.
The near-wall excess of platelet-sized particles in blood flow: its dependence on hematocrit and wall shear rate
.
Microvasc Res
.
1987
;
33
(
2
):
211
-
223
.
22.
Woldhuis
B
,
Tangelder
GJ
,
Slaaf
DW
,
Reneman
RS
.
Concentration profile of blood platelets differs in arterioles and venules
.
Am J Physiol
.
1992
;
262
(
4 Pt 2
):
H1217
-
H1223
.
23.
Yeh
C
,
Eckstein
EC
.
Transient lateral transport of platelet-sized particles in flowing blood suspensions
.
Biophys J
.
1994
;
66
(
5
):
1706
-
1716
.
24.
Hopkins
R
,
Fratianne
R
,
Rao
K
,
Damewood
C
.
Effects of hematocrit and viscosity on continuing hemorrhage
.
J Trauma
.
1974
;
14
(
6
):
482
-
493
.
25.
Blajchman
MA
,
Bordin
JO
,
Bardossy
L
,
Heddle
NM
.
The contribution of the haematocrit to thrombocytopenic bleeding in experimental animals
.
Br J Haematol
.
1994
;
86
(
2
):
347
-
350
.
26.
Stolla
M
,
Stefanini
L
,
Roden
RC
, et al
.
The kinetics of αIIbβ3 activation determines the size and stability of thrombi in mice: implications for antiplatelet therapy
.
Blood
.
2011
;
117
(
3
):
1005
-
1013
.
27.
Dong
X
,
Liu
W
,
Shen
Y
, et al
.
Anticoagulation targeting membrane-bound anionic phospholipids improves outcomes of traumatic brain injury in mice
.
Blood
.
2021
;
138
(
25
):
2714
-
2726
.
28.
Hui
KY
,
Haber
E
,
Matsueda
GR
.
Monoclonal antibodies to a synthetic fibrin-like peptide bind to human fibrin but not fibrinogen
.
Science
.
1983
;
222
(
4628
):
1129
-
1132
.
29.
Adili
R
,
Tourdot
BE
,
Mast
K
, et al
.
First selective 12-LOX inhibitor, ML355, impairs thrombus formation and vessel occlusion in vivo with minimal effects on hemostasis
.
Arterioscler Thromb Vasc Biol
.
2017
;
37
(
10
):
1828
-
1839
.
30.
Houck
KL
,
Yuan
H
,
Tian
Y
, et al
.
Physical proximity and functional cooperation of glycoprotein 130 and glycoprotein VI in platelet membrane lipid rafts
.
J Thromb Haemost
.
2019
;
17
(
9
):
1500
-
1510
.
31.
Yuan
H
,
Houck
KL
,
Tian
Y
, et al
.
Piperlongumine blocks JAK2-STAT3 to inhibit collagen-induced platelet reactivity independent of reactive oxygen species
.
PLoS One
.
2015
;
10
(
12
):
e0143964
.
32.
Zhang
JN
,
Bergeron
AL
,
Yu
Q
, et al
.
Duration of exposure to high fluid shear stress is critical in shear-induced platelet activation-aggregation
.
Thromb Haemost
.
2003
;
90
(
4
):
672
-
678
.
33.
Kumar
A
,
Schmidt
BR
,
Sanchez
ZAC
, et al
.
Automated motion tracking and data extraction for red blood cell biomechanics
.
Curr Protoc Cytom
.
2020
;
93
(
1
):
e75
.
34.
Yee
DL
,
Bergeron
AL
,
Sun
CW
,
Dong
JF
,
Bray
PF
.
Platelet hyperreactivity generalizes to multiple forms of stimulation
.
J Thromb Haemost
.
2006
;
4
(
9
):
2043
-
2050
.
35.
Liu
W
,
Patel
K
,
Wang
Y
, et al
.
Dynamic and functional linkage between von Willebrand factor and ADAMTS-13 with aging: an atherosclerosis risk in community study
.
J Thromb Haemost
.
2023
;
21
(
12
):
3371
-
3382
.
36.
Shetlar
MD
,
Hill
HAO
.
Reactions of hemoglobin with phenylhydrazine: a review of selected aspects
.
Environ Health Perspect
.
1985
;
64
:
265
-
281
.
37.
Berger
J
.
Phenylhydrazine haematotoxicity
.
J Appl Biomed
.
2007
;
5
(
3
):
125
-
130
.
38.
Morodomi
Y
,
Kanaji
S
,
Won
E
,
Ruggeri
ZM
,
Kanaji
T
.
Mechanisms of anti-GPIbα antibody–induced thrombocytopenia in mice
.
Blood
.
2020
;
135
(
25
):
2292
-
2301
.
39.
Xing
S
,
Shen
X
,
Yang
J kun
, et al
.
Single-dose administration of recombinant human thrombopoietin mitigates total body irradiation-induced hematopoietic system injury in mice and nonhuman primates
.
Int J Radiat Oncol Biol Phys
.
2020
;
108
(
5
):
1357
-
1367
.
40.
Sanchez
ZAC
,
Vijayananda
V
,
Virassammy
DM
,
Rosenfeld
L
,
Ramasubramanian
AK
.
The interaction of vortical flows with red cells in venous valve mimics
.
Biomicrofluidics
.
2022
;
16
(
2
):
024103
.
41.
Abay
A
,
Simionato
G
,
Chachanidze
R
, et al
.
Glutaraldehyde - a subtle tool in the investigation of healthy and pathologic red blood cells
.
Front Physiol
.
2019
;
10
:
514
.
42.
Yancey
PG
,
Rodrigueza
WV
,
Kilsdonk
EPC
, et al
.
Cellular cholesterol efflux mediated by cyclodextrins: demonstration of kinetic pools and mechanism of efflux
.
J Biol Chem
.
1996
;
271
(
27
):
16026
-
16034
.
43.
Christian
AE
,
Haynes
MP
,
Phillips
MC
,
Rothblat
GH
.
Use of cyclodextrins for manipulating cellular cholesterol content
.
J Lipid Res
.
1997
;
38
(
11
):
2264
-
2272
.
44.
Sherstyukova
E
,
Chernysh
A
,
Moroz
V
,
Kozlova
E
,
Sergunova
V
,
Gudkova
O
.
The relationship of membrane stiffness, cytoskeleton structure and storage time of pRBCs
.
Vox Sang
.
2021
;
116
(
4
):
405
-
415
.
45.
Lamzin
IM
,
Khayrullin
RM
.
The quality assessment of stored red blood cells probed using atomic-force microscopy
.
Anat Res Int
.
2014
;
2014
:
869683
.
46.
Reimers
R
,
Sutera
S
,
Joist
J
.
Potentiation by red blood cells of shear-induced platelet aggregation: relative importance of chemical and physical mechanisms
.
Blood
.
1984
;
64
(
6
):
1200
-
1206
.
47.
Boas
FE
,
Forman
L
,
Beutler
E
.
Phosphatidylserine exposure and red cell viability in red cell aging and in hemolytic anemia
.
Medical Sciences
.
1998
;
95
(
6
):
3077
-
3081
.
48.
Van Heerde
WL
,
Poort
S
,
Van T’Veer
C
,
Reutelingsperger
CPM
,
De Groot
PG
.
Binding of recombinant annexin V to endothelial cells: effect of annexin V binding on endothelial-cell-mediated thrombin formation
.
Biochem J
.
1994
;
302
(
Pt 1
):
305
-
312
.
49.
Thamsen
B
,
Blümel
B
,
Schaller
J
, et al
.
Numerical analysis of blood damage potential of the HeartMate II and HeartWare HVAD rotary blood pumps
.
Artif Organs
.
2015
;
39
(
8
):
651
-
659
.
50.
Granja
T
,
Magunia
H
,
Schüssel
P
, et al
.
Left ventricular assist device implantation causes platelet dysfunction and proinflammatory platelet-neutrophil interaction
.
Platelets
.
2022
;
33
(
1
):
132
-
140
.
51.
Liesdek
OCD
,
Schutgens
REG
,
de Heer
LM
, et al
.
Acquired blood platelet disorder in patients with end-stage heart failure after implantation of a continuous centrifugal-flow left ventricular assist device: a prospective cohort study
.
Res Pract Thromb Haemost
.
2023
;
7
(
2
):
100101
.
52.
de Nattes
T
,
Litzler
PY
,
Gay
A
,
Nafeh-Bizet
C
,
François
A
,
Guerrot
D
.
Hemolysis induced by left ventricular assist device is associated with proximal tubulopathy
.
PLoS One
.
2020
;
15
(
11
):
e0242931
.
53.
Ravichandran
AK
,
Parker
J
,
Novak
E
, et al
.
Hemolysis in left ventricular assist device: a retrospective analysis of outcomes
.
J Heart Lung Transplant
.
2014
;
33
(
1
):
44
-
50
.
54.
Manfredi
JP
,
Sparks
HV
.
Adenosine’s role in coronary vasodilation induced by atrial pacing and norepinephrine
.
Am J Physiol
.
1982
;
243
(
4
):
H536
-
H545
.
55.
Coade
SB
,
Pearson
JD
.
Metabolism of adenine nucleotides in human blood
.
Circ Res
.
1989
;
65
(
3
):
531
-
537
.
56.
Uhl
L
,
Assmann
SF
,
Hamza
TH
,
Harrison
RW
,
Gernsheimer
T
,
Slichter
SJ
.
Laboratory predictors of bleeding and the effect of platelet and RBC transfusions on bleeding outcomes in the PLADO trial
.
Blood
.
2017
;
130
(
10
):
1247
-
1258
.
57.
Gernsheimer
TB
,
Brown
SP
,
Triulzi
DJ
, et al
.
Prophylactic tranexamic acid in patients with hematologic malignancy: a placebo-controlled, randomized clinical trial
.
Blood
.
2022
;
140
(
11
):
1254
-
1262
.
58.
Tomaiuolo
M
,
Matzko
CN
,
Poventud-Fuentes
I
,
Weisel
JW
,
Brass
LF
,
Stalker
TJ
.
Interrelationships between structure and function during the hemostatic response to injury
.
Proc Natl Acad Sci U S A
.
2019
;
116
(
6
):
2243
-
2252
.
59.
Stalker
TJ
,
Traxler
EA
,
Wu
J
, et al
.
Hierarchical organization in the hemostatic response and its relationship to the platelet-signaling network
.
Blood
.
2013
;
121
(
10
):
1875
-
1885
.
60.
Byrnes
JR
,
Duval
C
,
Wang
Y
, et al
.
Factor XIIIa-dependent retention of red blood cells in clots is mediated by fibrin a-chain crosslinking
.
Blood
.
2015
;
126
(
16
):
1940
-
1948
.
61.
Carvalho
FA
,
Connell
S
,
Miltenberger-Miltenyi
G
, et al
.
Atomic force microscopy-based molecular recognition of a fibrinogen receptor on human erythrocytes
.
ACS Nano
.
2010
;
4
(
8
):
4609
-
4620
.
62.
Wohner
N
,
Sótonyi
P
,
MacHovich
R
, et al
.
Lytic resistance of fibrin containing red blood cells
.
Arterioscler Thromb Vasc Biol
.
2011
;
31
(
10
):
2306
-
2313
.
63.
Gersh
KC
,
Nagaswami
C
,
Weisel
JW
.
Fibrin network structure and clot mechanical properties are altered by incorporation of erythrocytes
.
Thromb Haemost
.
2009
;
102
(
6
):
1169
-
1175
.
64.
Alkhamis
TM
,
Beissinger
RL
,
Chediak
JR
.
Red blood cell effect on platelet adhesion and aggregation in low-stress shear flow. Myth or fact?
.
ASAIO (Am Soc Artif Intern Organs) Trans
.
1988
;
34
(
3
):
868
-
873
.
65.
Bergfeld
GR
,
Forrester
T
.
Release of ATP from human erythrocytes in response to a brief period of hypoxia and hypercapnia
.
Cardiovasc Res
.
1992
;
26
(
1
):
40
-
47
.
66.
Sprague
RS
,
Ellsworth
ML
,
Stephenson
AH
,
Lonigro
AJ
.
Participation of cAMP in a signal-transduction pathway relating erythrocyte deformation to ATP release
.
Am J Physiol Cell Physiol
.
2001
;
281
(
4
):
C1158
-
C1164
.
67.
Ferguson
BS
,
Neidert
LE
,
Rogatzki
MJ
,
Lohse
KR
,
Gladden
LB
,
Kluess
HA
.
Red blood cell ATP release correlates with red blood cell hemolysis
.
Am J Physiol Cell Physiol
.
2021
;
321
(
5
):
C761
-
C769
.
68.
Nevaril
CG
,
Lynch
EG
,
Alfrey
CP
,
Hellums
JD
.
Erythrocyte damage and destruction induced by shearing stress
.
J Lab Clin Med
.
1968
;
71
(
5
):
784
-
790
.
69.
Leverett
LB
,
Hellums
JD
,
Alfrey
CP
,
Lynch
EC
.
Red blood cell damage by shear stress
.
Biophys J
.
1972
;
12
(
3
):
257
-
273
.
70.
Nascimbene
A
,
Neelamegham
S
,
Frazier
OH
,
Moake
JL
,
Dong
JF
.
Acquired von Willebrand syndrome associated with left ventricular assist device
.
Blood
.
2016
;
127
(
25
):
3133
-
3141
.
71.
Doole
FT
,
Kumarage
T
,
Ashkar
R
,
Brown
MF
.
Cholesterol stiffening of lipid membranes
.
J Membr Biol
.
2022
;
255
(
4-5
):
385
-
405
.
72.
Chakraborty
S
,
Doktorova
M
,
Molugu
TR
, et al
.
How cholesterol stiffens unsaturated lipid membranes
.
Proc Natl Acad Sci U S A
.
2020
;
117
(
36
):
21896
-
21905
.
73.
Biswas
A
,
Kashyap
P
,
Datta
S
,
Sengupta
T
,
Sinha
B
.
Cholesterol depletion by MβCD enhances cell membrane tension and its variations-reducing integrity
.
Biophys J
.
2019
;
116
(
8
):
1456
-
1468
.
74.
Reinhart
WH
,
Zehnder
L
,
Schulzki
T
.
Stored erythrocytes have less capacity than normal erythrocytes to support primary haemostasis
.
Thromb Haemost
.
2009
;
101
(
4
):
720
-
723
.
75.
Kumar
A
,
Graham
MD
.
Segregation by membrane rigidity in flowing binary suspensions of elastic capsules
.
Phys Rev E Stat Nonlin Soft Matter Phys
.
2011
;
84
(
6 Pt 2
):
066316
.
76.
Zhang
X
,
Caruso
C
,
Lam
WA
,
Graham
MD
.
Flow-induced segregation and dynamics of red blood cells in sickle cell disease
.
Phys Rev Fluids
.
2020
;
5
(
5
):
053101
.
77.
Caruso
C
,
Fay
ME
,
Cheng
X
, et al
.
Pathologic mechanobiological interactions between red blood cells and endothelial cells directly induce vasculopathy in iron deficiency anemia
.
iScience
.
2022
;
25
(
7
):
104606
.
78.
Pries
AR
,
Ley
K
,
Claassen
M
,
Gaehtgens
P
.
Red cell distribution at microvascular bifurcations
.
Microvasc Res
.
1989
;
38
(
1
):
81
-
101
.
79.
Zhang
Y
,
Fai
TG
.
Influence of the vessel wall geometry on the wall-induced migration of red blood cells
.
PLoS Comput Biol
.
2023
;
19
(
7
):
e1011241
.
80.
Kucukal
E
,
Ilich
A
,
Key
NS
,
Little
JA
,
Gurkan
UA
.
Red blood cell adhesion to heme-activated endothelial cells reflects clinical phenotype in sickle cell disease
.
Am J Hematol
.
2018
;
93
(
8
):
1050
-
1060
.
81.
Hebbel
RP
.
Blockade of adhesion of sickle cells to endothelium by monoclonal antibodies
.
N Engl J Med
.
2000
;
342
(
25
):
1910
-
1912
.
82.
Wautier
MP
,
Boulanger
E
,
Guillausseau
PJ
,
Massin
P
,
Wautier
JL
.
AGEs, macrophage colony stimulating factor and vascular adhesion molecule blood levels are increased in patients with diabetic microangiopathy
.
Thromb Haemost
.
2004
;
91
(
5
):
879
-
885
.
83.
Wautier
MP
,
Héron
E
,
Picot
J
,
Colin
Y
,
Hermine
O
,
Wautier
JL
.
Red blood cell phosphatidylserine exposure is responsible for increased erythrocyte adhesion to endothelium in central retinal vein occlusion
.
J Thromb Haemost
.
2011
;
9
(
5
):
1049
-
1055
.
84.
Oberleithner
H
.
Vascular endothelium leaves fingerprints on the surface of erythrocytes
.
Pflugers Arch
.
2013
;
465
(
10
):
1451
-
1458
.
85.
Jiang
XZ
,
Goligorsky
MS
,
Luo
KH
.
Cross talk between endothelial and red blood cell glycocalyces via near-field flow
.
Biophys J
.
2021
;
120
(
15
):
3180
-
3191
.
You do not currently have access to this content.
Sign in via your Institution