• The inability of T-PLL cells to evoke adequate P53 responses makes them vulnerable to inhibitors of (H)DAC, BCL2, CDK, and MDM2.

  • Pharmacologic genotoxic insults combined with P53 reactivation represent an efficient and selective treatment strategy in T-PLL.

Abstract

T-prolymphocytic leukemia (T-PLL) is a mature T-cell neoplasm associated with marked chemotherapy resistance and continued poor clinical outcomes. Current treatments, that is, the CD52-antibody alemtuzumab, offer transient responses, with relapses being almost inevitable without consolidating allogeneic transplantation. Recent more detailed concepts of T-PLL’s pathobiology fostered the identification of actionable vulnerabilities: (1) altered epigenetics, (2) defective DNA damage responses, (3) aberrant cell-cycle regulation, and (4) deregulated prosurvival pathways, including T-cell receptor and JAK/STAT signaling. To further develop related preclinical therapeutic concepts, we studied inhibitors of histone deacetylases ([H]DACs), B-cell lymphoma 2 (BCL2), cyclin-dependent kinase (CDK), mouse double minute 2 (MDM2), and classical cytostatics, using (1) single-agent and combinatorial compound testing in 20 well-characterized and molecularly profiled primary T-PLL (validated by additional 42 cases) and (2) 2 independent murine models (syngeneic transplants and patient-derived xenografts). Overall, the most efficient/selective single agents and combinations (in vitro and in mice) included cladribine, romidepsin ([H]DAC), venetoclax (BCL2), and/or idasanutlin (MDM2). Cladribine sensitivity correlated with expression of its target RRM2. T-PLL cells revealed low overall apoptotic priming with heterogeneous dependencies on BCL2 proteins. In additional 38 T-cell leukemia/lymphoma lines, TP53 mutations were associated with resistance toward MDM2 inhibitors. P53 of T-PLL cells, predominantly in wild-type configuration, was amenable to MDM2 inhibition, which increased its MDM2-unbound fraction. This facilitated P53 activation and downstream signals (including enhanced accessibility of target-gene chromatin regions), in particular synergy with insults by cladribine. Our data emphasize the therapeutic potential of pharmacologic strategies to reinstate P53-mediated apoptotic responses. The identified efficacies and their synergies provide an informative background on compound and patient selection for trial designs in T-PLL.

1.
Staber
PB
,
Herling
M
,
Bellido
M
, et al
.
Consensus criteria for diagnosis, staging, and treatment response assessment of T-cell prolymphocytic leukemia
.
Blood
.
2019
;
134
(
14
):
1132
-
1143
.
2.
Herling
M
,
Khoury
JD
,
Washington
LT
,
Duvic
M
,
Keating
MJ
,
Jones
D
.
A systematic approach to diagnosis of mature T-cell leukemias reveals heterogeneity among WHO categories
.
Blood
.
2004
;
104
(
2
):
328
-
335
.
3.
Dearden
C
.
How I treat prolymphocytic leukemia
.
Blood
.
2012
;
120
(
3
):
538
-
551
.
4.
Ravandi
F
,
O’Brien
S
,
Jones
D
, et al
.
T-cell prolymphocytic leukemia: a single-institution experience
.
Clin Lymphoma Myeloma
.
2005
;
6
(
3
):
234
-
239
.
5.
Kiel
MJ
,
Velusamy
T
,
Rolland
D
, et al
.
Integrated genomic sequencing reveals mutational landscape of T-cell prolymphocytic leukemia
.
Blood
.
2014
;
124
(
9
):
1460
-
1472
.
6.
Braun
T
,
Dechow
A
,
Friedrich
G
,
Seifert
M
,
Stachelscheid
J
,
Herling
M
.
Advanced pathogenetic concepts in T-cell prolymphocytic leukemia and their translational impact
.
Front Oncol
.
2021
;
11
:
775363
.
7.
Schrader
A
,
Crispatzu
G
,
Oberbeck
S
, et al
.
Actionable perturbations of damage responses by TCL1/ATM and epigenetic lesions form the basis of T-PLL
.
Nat Commun
.
2018
;
9
(
1
).
8.
Dearden
CE
,
Khot
A
,
Else
M
, et al
.
Alemtuzumab therapy in T-cell prolymphocytic leukemia: comparing efficacy in a series treated intravenously and a study piloting the subcutaneous route
.
Blood
.
2011
;
118
(
22
):
5799
-
5802
.
9.
Wahnschaffe
L
,
Herling
M
.
What to look out for when transplanting T-cell prolymphocytic leukemia
.
Acta Haematol
.
2021
;
144
:
1
-
3
.
10.
Herbaux
C
,
Kornauth
C
,
Poulain
S
, et al
.
BH3 profiling identifies ruxolitinib as a promising partner for venetoclax to treat T-cell prolymphocytic leukemia
.
Blood
.
2021
;
137
(
25
):
3495
-
3506
.
11.
Boidol
B
,
Kornauth
C
,
van der Kouwe
E
, et al
.
First-in-human response of BCL-2 inhibitor venetoclax in T-cell prolymphocytic leukemia
.
Blood
.
2017
;
130
(
23
):
2499
-
2503
.
12.
Alfayez
M
,
Thakral
B
,
Jain
P
, et al
.
First report of clinical response to venetoclax combination with pentostatin in T-cell-prolymphocytic leukemia (T-PLL)
.
Leuk Lymphoma
.
2020
;
61
(
2
):
445
-
449
.
13.
Pflug
N
,
Cramer
P
,
Robrecht
S
, et al
.
New lessons learned in T-PLL: results from a prospective phase-II trial with fludarabine–mitoxantrone–cyclophosphamide–alemtuzumab induction followed by alemtuzumab maintenance
.
Leuk Lymphoma
.
2019
;
60
(
3
):
649
-
657
.
14.
Hopfinger
G
,
Busch
R
,
Pflug
N
, et al
.
Sequential chemoimmunotherapy of fludarabine, mitoxantrone, and cyclophosphamide induction followed by alemtuzumab consolidation is effective in T-cell prolymphocytic leukemia
.
Cancer
.
2013
;
119
(
12
):
2258
-
2267
.
15.
Herling
M
,
Patel
KA
,
Teitell
MA
, et al
.
High TCL1 expression and intact T-cell receptor signaling define a hyperproliferative subset of T-cell prolymphocytic leukemia
.
Blood
.
2008
;
111
(
1
):
328
-
337
.
16.
Soulier
J
,
Pierron
G
,
Vecchione
D
, et al
.
A complex pattern of recurrent chromosomal losses and gains in T-cell prolymphocytic leukemia
.
Genes Chromosomes Cancer
.
2001
;
31
(
3
):
248
-
254
.
17.
Stachelscheid
J
,
Jiang
Q
,
Herling
M
.
The modes of dysregulation of the proto-oncogene T-cell leukemia/lymphoma 1A
.
Cancers
.
2021
;
13
(
21
).
18.
Braun
T
,
Stachelscheid
J
,
Bley
N
, et al
.
Non-canonical function of AGO2 augments T-cell receptor signaling in T-cell prolymphocytic leukemia
.
Cancer Res
.
2022
;
82
(
9
):
1818
-
1831
.
19.
Wahnschaffe
L
,
Braun
T
,
Timonen
S
, et al
.
JAK/STAT-activating genomic alterations are a hallmark of T-PLL
.
Cancers
.
2019
;
11
(
12
):
1833
.
20.
Schrader
A
,
Braun
T
,
Herling
M
.
The dawn of a new era in treating T-PLL
.
Oncotarget
.
2019
;
10
(
6
):
626
-
628
.
21.
Andersson
EI
,
Pützer
S
,
Yadav
B
, et al
.
Discovery of novel drug sensitivities in T-PLL by high-throughput ex vivo drug testing and mutation profiling
.
Leukemia
.
2018
;
32
(
3
):
774
-
787
.
22.
Pemovska
T
,
Kontro
M
,
Yadav
B
, et al
.
Individualized systems medicine strategy to tailor treatments for patients with chemorefractory acute myeloid leukemia
.
Cancer Discov
.
2013
;
3
(
12
):
1416
-
1429
.
23.
He
L
,
Tang
J
,
Andersson
EI
, et al
.
Patient-customized drug combination prediction and testing for T-cell prolymphocytic leukemia patients
.
Cancer Res
.
2018
;
78
(
9
):
2407
-
2418
.
24.
Yadav
B
,
Pemovska
T
,
Szwajda
A
, et al
.
Quantitative scoring of differential drug sensitivity for individually optimized anticancer therapies
.
Sci Rep
.
2014
;
4
(
1
):
5193
.
25.
Chen
Y
,
He
L
,
Ianevski
A
, et al
.
Robust scoring of selective drug responses for patient-tailored therapy selection
.
Nat Protoc
.
2024
;
19
(
1
):
60
-
82
.
26.
Koch
R
,
Christie
AL
,
Crombie
JL
, et al
.
Biomarker-driven strategy for MCL1 inhibition in T-cell lymphomas
.
Blood
.
2019
;
133
(
6
):
566
-
575
.
27.
Ryan
J
,
Montero
J
,
Rocco
J
,
Letai
A
.
iBH3: simple, fixable BH3 profiling to determine apoptotic priming in primary tissue by flow cytometry
.
Biol Chem
.
2016
;
397
(
7
):
671
-
678
.
28.
Gritti
C
,
Dastot
H
,
Soulier
J
, et al
.
Transgenic mice for MTCP1 develop T-cell prolymphocytic leukemia
.
Blood
.
1998
;
92
(
2
):
368
-
373
.
29.
Isabelle
C
,
Johnson
WT
,
McConnell
K
, et al
.
Preclinical evaluation of anti-CD38 therapy in mature T-cell neoplasms
.
Blood Adv
.
2023
;
7
(
14
):
3637
-
3641
.
30.
Oberbeck
S
,
Schrader
A
,
Warner
K
, et al
.
Noncanonical effector functions of the T-memory-like T-PLL cell are shaped by cooperative TCL1A and TCR signaling
.
Blood
.
2020
;
136
(
24
):
2786
-
2802
.
31.
Herbaux
C
,
Genet
P
,
Bouabdallah
K
, et al
.
Bendamustine is effective in T-cell prolymphocytic leukaemia
.
Br J Haematol
.
2015
;
168
(
6
):
916
-
919
.
32.
Zaja
F
,
Baldini
L
,
Ferreri
AJM
, et al
.
Bendamustine salvage therapy for T cell neoplasms
.
Ann Hematol
.
2013
;
92
(
9
):
1249
-
1254
.
33.
Tsimberidou
AM
,
Alvarado
Y
,
Giles
FJ
.
Evolving role of ribonucleoside reductase inhibitors in hematologic malignancies
.
Expert Rev Anticancer Ther
.
2002
;
2
(
4
):
437
-
448
.
34.
Hasanali
ZS
,
Saroya
BS
,
Stuart
A
, et al
.
Epigenetic therapy overcomes treatment resistance in T cell prolymphocytic leukemia
.
Sci Transl Med
.
2015
;
7
(
293
):
293ra102
.
35.
Johansson
P
,
Dierichs
L
,
Klein-Hitpass
L
, et al
.
Anti-leukemic effect of CDK9 inhibition in T-cell prolymphocytic leukemia
.
Ther Adv Hematol
.
2020
;
11
:
2040620720933761
.
36.
Kornauth
CF
,
Herbaux
C
,
Boidol
B
, et al
.
The combination of venetoclax and ibrutinib is effective in relapsed/refractory T-prolymphocytic leukemia and influences BCL-2-family member dependencies
.
Hematol Oncol
.
2019
;
37
(
S2
):
482
-
484
.
37.
Kornauth
C
,
Herbaux
C
,
Boidol
B
, et al
.
Rationale for the combination of venetoclax and ibrutinib in T-prolymphocytic leukemia
.
Haematologica
.
2021
;
106
(
8
):
2251
-
2256
.
38.
Gomez-Arteaga
A
,
Margolskee
E
,
Wei
MT
,
van Besien
K
,
Inghirami
G
,
Horwitz
S
.
Combined use of tofacitinib (pan-JAK inhibitor) and ruxolitinib (a JAK1/2 inhibitor) for refractory T-cell prolymphocytic leukemia (T-PLL) with a JAK3 mutation
.
Leuk Lymphoma
.
2019
;
60
(
7
):
1626
-
1631
.
39.
Hampel
PJ
,
Parikh
SA
,
Call
TG
, et al
.
Venetoclax treatment of patients with relapsed T-cell prolymphocytic leukemia
.
Blood Cancer J
.
2021
;
11
(
3
):
47
.
40.
Shao
J
,
Zhou
B
,
Chu
B
,
Yen
Y
.
Ribonucleotide reductase inhibitors and future drug design
.
Curr Cancer Drug Targets
.
2006
;
6
(
5
):
409
-
431
.
41.
Freshour
SL
,
Kiwala
S
,
Cotto
KC
, et al
.
Integration of the Drug–Gene Interaction Database (DGIdb 4.0) with open crowdsource efforts
.
Nucleic Acids Res
.
2021
;
49
(
D1
):
D1144
-
D1151
.
42.
Spurgeon
S
,
Yu
M
,
Phillips
JD
,
Epner
EM
.
Cladribine: not just another purine analogue?
.
Expert Opin Investig Drugs
.
2009
;
18
(
8
):
1169
-
1181
.
43.
Braun
T
,
von Jan
J
,
Wahnschaffe
L
,
Herling
M
.
Advances and perspectives in the treatment of T-PLL
.
Curr Hematol Malig Rep
.
2020
;
15
(
2
):
113
-
124
.
44.
Gandhi
V
,
Plunkett
W
.
Cellular and clinical pharmacology of fludarabine
.
Clin Pharmacokinet
.
2002
;
41
(
2
):
93
-
103
.
45.
Stengel
A
,
Kern
W
,
Zenger
M
, et al
.
Genetic characterization of T-PLL reveals two major biologic subgroups and JAK3 mutations as prognostic marker
.
Genes Chromosomes Cancer
.
2016
;
55
(
1
):
82
-
94
.
46.
Lone
W
,
Alkhiniji
A
,
Manikkam Umakanthan
J
,
Iqbal
J
.
Molecular insights into pathogenesis of peripheral T cell lymphoma: a review
.
Curr Hematol Malig Rep
.
2018
;
13
(
4
):
318
-
328
.
47.
Bozic
I
,
Reiter
JG
,
Allen
B
, et al
.
Evolutionary dynamics of cancer in response to targeted combination therapy
.
Elife
.
2013
;
2
:
e00747
.
48.
Herling
M
,
Dearden
C
,
Zaja
F
, et al
.
Limited efficacy for ibrutinib and venetoclax in T-prolymphocytic leukemia: results from a phase 2 international study
.
Blood Adv
.
2024
;
8
(
4
):
842
-
845
.
49.
Ianevski
A
,
Giri
AK
,
Gautam
P
, et al
.
Prediction of drug combination effects with a minimal set of experiments
.
Nat Mach Intell
.
2019
;
1
(
12
):
568
-
577
.
50.
Ianevski
A
,
Timonen
S
,
Kononov
A
,
Aittokallio
T
,
Giri
AK
.
SynToxProfiler: an interactive analysis of drug combination synergy, toxicity and efficacy
.
PLoS Comput Biol
.
2020
;
16
(
2
):
e1007604
.
51.
Ianevski
A
,
Giri
AK
,
Aittokallio
T
.
SynergyFinder 3.0: an interactive analysis and consensus interpretation of multi-drug synergies across multiple samples
.
Nucleic Acids Res
.
2022
;
50
(
W1
):
W739
-
W743
.
52.
Yadav
B
,
Wennerberg
K
,
Aittokallio
T
,
Tang
J
.
Searching for drug synergy in complex dose–response landscapes using an interaction potency model
.
Comput Struct Biotechnol J
.
2015
;
13
:
504
-
513
.
53.
Chène
P
.
Inhibiting the p53–MDM2 interaction: an important target for cancer therapy
.
Nat Rev Cancer
.
2003
;
3
(
2
):
102
-
109
.
54.
Chen
Y
,
Ohki
R
.
p53-PHLDA3-Akt network: the key regulators of neuroendocrine tumorigenesis
.
Int J Mol Sci
.
2020
;
21
(
11
):
4098
.
55.
Han
J wen
,
Flemington
C
,
Houghton
AB
, et al
.
Expression of bbc3, a pro-apoptotic BH3-only gene, is regulated by diverse cell death and survival signals
.
Proc Natl Acad Sci U S A
.
2001
;
98
(
20
):
11318
-
11323
.
56.
Jain
P
,
Aoki
E
,
Keating
M
, et al
.
Characteristics, outcomes, prognostic factors and treatment of patients with T-cell prolymphocytic leukemia (T-PLL)
.
Ann Oncol
.
2017
;
28
(
7
):
1554
-
1559
.
57.
Dietrich
S
,
Oleś
M
,
Lu
J
, et al
.
Drug-perturbation-based stratification of blood cancer
.
J Clin Invest
.
2018
;
128
(
1
):
427
-
445
.
58.
Mercieca
J
,
Matutes
E
,
Dearden
C
,
MacLennan
K
,
Catovsky
D
.
The role of pentostatin in the treatment of T-cell malignancies: analysis of response rate in 145 patients according to disease subtype
.
J Clin Oncol
.
1994
;
12
(
12
):
2588
-
2593
.
59.
Herbaux
C
,
Kornauth
C
,
Poulain
S
, et al
.
Characterizing the anti-apoptotic dependencies of T-cell prolymphocytic leukemia identifies HDAC and JAK/STAT pathway inhibitors as promising combination partners to augment Bcl-2 targeted killing by venetoclax [abstract]
.
Blood
.
2019
;
134
(
suppl 1
):
807
.
60.
Pützer
S
,
Varghese
L
,
von Jan
J
, et al
.
Reinstated p53 response and high anti-T-cell leukemia activity by the novel alkylating deacetylase inhibitor tinostamustine
.
Leukemia
.
2020
;
34
(
9
):
2513
-
2518
.
61.
Pfreundschuh
M
,
Trümper
L
,
Kloess
M
, et al
.
Two-weekly or 3-weekly CHOP chemotherapy with or without etoposide for the treatment of elderly patients with aggressive lymphomas: results of the NHL-B2 trial of the DSHNHL
.
Blood
.
2004
;
104
(
3
):
634
-
641
.
62.
Kuusanmäki
H
,
Kytölä
S
,
Vänttinen
I
, et al
.
Ex vivo venetoclax sensitivity testing predicts treatment response in acute myeloid leukemia
.
Haematologica
.
2023
;
108
(
7
):
1768
-
1781
.
You do not currently have access to this content.
Sign in via your Institution