Abstract

Numerous antibody-drug conjugates (ADCs) are being developed for cancer immunotherapy. Although several of these agents have demonstrated considerable clinical efficacy and have won Food and Drug Administration (FDA) approval, in many instances, they have been characterized by adverse side effects (ASEs), which can be quite severe in a fraction of treated patients. The key hypothesis in this perspective is that many of the most serious ASEs associated with the use of ADCs in the treatment of cancer can be most readily explained and understood due to the inappropriate processing of these ADCs via pathways normally followed for immune complex clearance, which include phagocytosis and trogocytosis. We review the key published basic science experiments and clinical observations that support this idea. We propose that it is the interaction of the ADC with Fcγ receptors expressed on off-target cells and tissues that can most readily explain ADC-mediated pathologies, which therefore provides a rationale for the design of protocols to minimize ASEs. We describe measurements that should help identify those patients most likely to experience ASE due to ADC, and we propose readily available treatments as well as therapies under development for other indications that should substantially reduce ASE associated with ADC. Our focus will be on the following FDA-approved ADC for which there are substantial literatures: gemtuzumab ozogamicin and inotuzumab ozogamicin; and trastuzumab emtansine and trastuzumab deruxtecan.

1.
De Goeij
BE
,
Lambert
JM
.
New developments for antibody-drug conjugate-based therapeutic approaches
.
Curr Opin Immunol
.
2016
;
40
:
14
-
23
.
2.
Chau
CH
,
Steeg
PS
,
Figg
WD
.
Antibody-drug conjugates for cancer
.
Lancet
.
2019
;
394
(
10200
):
793
-
804
.
3.
Riccardi
F
,
Dal Bo
M
,
Macor
M
,
Toffoli
G
.
A comprehensive overview on antibody-drug conjugates: from the conceptualization to cancer therapy
.
Front Pharmacol
.
2023
;
14
:
1274088
.
4.
Shastry
M
,
Gupta
A
,
Chandarlapaty
S
,
Young
M
,
Powles
T
,
Hamilton
E
.
Rise of antibody-drug conjugates: the present and future
.
Am Soc Clin Oncol Educ Book
.
2023
;
43
:
e390094
.
5.
Song
C
,
Jeong
M
,
In
H
,
Kim
JH
,
Lin
CW
,
Han
KH
.
Trends in the development of antibody-drug conjugates for cancer therapy
.
Antibodies (Basel)
.
2023
;
12
(
4
):
72
.
6.
Abelman
RO
,
Wu
B
,
Spring
LM
,
Ellisen
LW
,
Bardia
A
.
Mechanisms of resistance to antibody-drug conjugates
.
Cancers (Basel)
.
2023
;
15
(
4
):
1278
.
7.
Coleman
N
,
Yap
TA
,
Heymach
JV
,
Meric-Bernstam
F
,
Le
X
.
Antibody-drug conjugates in lung cancer: dawn of a new era?
.
NPJ Precis Oncol
.
2023
;
7
(
1
):
5
.
8.
Donaghy
H
.
Effects of antibody, drug and linker on the preclinical and clinical toxicities of antibody-drug conjugates
.
MAbs
.
2016
;
8
(
4
):
659
-
671
.
9.
Abuhelwa
Z
,
Alloghbi
A
,
Alqahtani
A
,
Nagasaka
M
.
Trastuzumab deruxtecan-induced interstitial lung disease/pneumonitis in ERBB2-positive advanced solid malignancies: a systematic review
.
Drugs
.
2022
;
82
(
9
):
979
-
987
.
10.
Ansary
A
,
Stolla
M
,
Corson
J
, et al
.
Effect of ado-trastuzumab emtansine on autologous platelet kinetics and function
.
JCO Precis Oncol
.
2022
;
6
:
e2200237
.
11.
Hayashi
N
,
Nakamura
S
,
Tokuda
Y
, et al
.
Prognostic value of HER2-positive circulating tumor cells in patients with metastatic breast cancer
.
Int J Clin Oncol
.
2012
;
17
(
2
):
96
-
104
.
12.
Kantarjian
H
,
DeAngelo
D
,
Advani
A
, et al
.
Hepatic adverse event profile of inotuzumab ozogamicin in adult patients with relapsed or refractory acute lymphoblastic leukaemia: results from the open-label, randomised, phase 3 INO-VATE study
.
Lancet Haematol
.
2017
;
4
(
8
):
e387
-
e398
.
13.
Baba
T
,
Kusumoto
M
,
Kato
T
, et al
.
Clinical and imaging features of interstitial lung disease in cancer patients treated with trastuzumab deruxtecan
.
Int J Clin Oncol
.
2023
;
28
(
12
):
1585
-
1596
.
14.
Mahalingaiah
PK
,
Ciurlionis
R
,
Durbin
KR
, et al
.
Potential mechanisms of target-independent uptake and toxicity of antibody-drug conjugates
.
Pharmacol Ther
.
2019
;
200
:
110
-
125
.
15.
Baldo
BA
.
Immune- and non-immune-mediated adverse effect of monoclonal antibody therapy: a survey of 110 approved antibodies
.
Antibodies (Basel)
.
2022
;
11
(
1
):
17
.
16.
Conte
P
,
Ascierto
P
,
Patelli
G
, et al
.
Drug-induced interstitial lung disease during cancer therapies: expert opinion on diagnosis and treatment
.
ESMO Open
.
2022
;
7
(
2
):
100404
.
17.
Godwin
CD
,
McDonald
GB
,
Walter
RB
.
Sinusoidal obstruction syndrome following CD33-targeted therapy in acute myeloid leukemia
.
Blood
.
2017
;
129
(
16
):
2330
-
2332
.
18.
Swain
SM
,
Nishino
M
,
Lancaster
L
, et al
.
Multidisciplinary clinical guidance on trastuzumab deruxtecan (T-DXd)-related interstitial lung disease/pneumonitis - focus on proactive monitoring, diagnosis and management
.
Cancer Treat Rev
.
2022
;
106
:
102378
.
19.
Li
BT
,
Smit
E
,
Goto
Y
, et al
.
Trastuzumab deruxtecan in HER2-mutant non-small-cell lung cancer
.
N Engl J Med
.
2022
;
386
(
3
):
241
-
251
.
20.
Powell
C
,
Modi
S
,
Iwata
H
, et al
.
Pooled analysis of drug-related interstitial lung disease and/or pneumonitis in nine tratuzumab deruxtecan monotherapy studies
.
ESMO Open
.
2022
;
7
(
4
):
100554
.
21.
Sugaya
A
,
Ishiguro
S
,
Mitsuhashi
S
, et al
.
Interstitial lung disease associated with trastuzumab monotherapy: a report of 3 cases
.
Mol Clin Oncol
.
2017
;
6
(
2
):
6229
-
6232
.
22.
Nguyen
T
,
Bordeau
B
,
Balthasar
J
.
Mechanisms of ADC toxicity and strategies to increase ADC tolerability
.
Cancers (Basel)
.
2023
;
15
(
3
):
713
.
23.
Rugo
HS
.
Real-world perspectives and practices for pneumonitis/interstitial lung disease associated with trastuzumab deruxtecan use in human epidermal growth factor receptor 2-exprressing metastatic breast cancer
.
JCO Oncol Pract
.
2023
;
19
(
8
):
539
-
546
.
24.
Tarantino
P
,
Ricciuti
B
,
Pradhan
S
,
Tolaney
S
.
Optimizing the safety of antibody-drug conjugates for patients with solid tumours
.
Nat Rev Clin Oncol
.
2023
;
20
(
8
):
558
-
576
.
25.
Wekking
D
,
Porcu
M
,
Pellegrino
B
, et al
.
Multidisciplinary clinical guidelines in proactive monitoring, early diagnosis, and effective managment of trastuzumab deruxtecan (T-DXd) induced interstitial lung disease (ILD) in breast cancer patients
.
ESMO Open
.
2023
;
8
(
6
):
102043
.
26.
Ye
Z
,
Chen
J
,
Chen
M
,
Wu
J
.
Is the interstitial lung disease induced by trastuzumab? case report and literature review
.
J Clin Pharm Ther
.
2020
;
45
(
5
):
1183
-
1186
.
27.
Yoshihara
K
,
Kobayashi
Y
,
Endo
S
, et al
.
Trastuzumab deruxtecan dosing in human epidermal growth factor receptor 2-positive gastric cancer: population pharmacokinetic modeling and exposure-response analysis
.
J Clin Pharmacol
.
2023
;
63
(
11
):
1232
-
1243
.
28.
Nelson
RA
.
The immune-adherence phenomenon. an immunologically specific reaction between microorganisms and erythrocytes leading to enhanced phagocytosis
.
Science
.
1953
;
118
(
3077
):
733
-
737
.
29.
Cornacoff
JB
,
Hebert
LA
,
Smead
WL
,
VanAman
ME
,
Birmingham
DJ
,
Waxman
FJ
.
Primate erythrocyte-immune complex-clearing mechanism
.
J Clin Invest
.
1983
;
71
(
2
):
236
-
247
.
30.
Edberg
JC
,
Kujala
GA
,
Taylor
RP
.
Rapid immune adherence reactivity of nascent, soluble antibody/DNA immune complexes in the circulation
.
J Immunol
.
1987
;
139
(
4
):
1240
-
1244
.
31.
Lindorfer
MA
,
Kohl
J
,
Taylor
RP
. In:
Ackerman
M E
,
Nimmerjahn
F
, eds.
Interactions between the complement system and Fcγ receptors in Antibody Fc: Linking adaptive and innate immunity
.
Elsevier
;
2014
:
49
-
74
.
32.
Taylor
RP
,
Lindorfer
MA
.
Fcγ-receptor-mediated trogocytosis impacts mAb-based therapies: historical precedence and recent developments
.
Blood
.
2015
;
125
(
5
):
762
-
766
.
33.
Kantarjian
H
,
DeAngelo
D
,
Advani
A
, et al
.
Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia
.
N Engl J Med
.
2016
;
375
(
8
):
740
-
753
.
34.
Modi
S
,
Saura
C
,
Yamashita
T
, et al
.
Trastuxumab deruxtecan in previously treated HER2-low advanced breast cancer
.
N Engl J Med
.
2022
;
387
(
1
):
9
-
20
.
35.
Modi
S
,
Park
H
,
Murthy
R
, et al
.
Antitumor activity and safety of trastuzumab deruxtecan in patients with HER2-low-expressing advanced breast cancer: results from a Phase Ib study
.
J Clin Oncol
.
2020
;
38
(
17
):
1887
-
1896
.
36.
Shitara
K
,
Bang
Y
,
Iwasa
S
, et al
.
Trastuzumab deruxtecan in previously treated HER2-positive gastric cancer
.
N Engl J Med
.
2020
;
382
(
25
):
2419
-
2430
.
37.
Appelbaum
F
,
Bernstein
ID
.
Gemtuzumab ozogamicin for acute myeloid leukemia
.
Blood
.
2017
;
130
(
22
):
2373
-
2376
.
38.
Shor
B
,
Gerber
H
,
Sapra
P
.
Preclinical and clinical development of inotuzumab-ozogamicin in hematological malignancies
.
Mol Immunol
.
2015
;
67
(
2 Pt A
):
107
-
116
.
39.
Joly
E
,
Hudrisier
D
.
What is trogocytosis and what is its purpose?
.
Nat Immunol
.
2003
;
4
(
9
):
815
.
40.
Beum
PV
,
Kennedy
AD
,
Williams
ME
,
Lindorfer
MA
,
Taylor
RP
.
The shaving reaction: rituximab/CD20 complexes are removed from mantle cell lymphoma and chronic lymphocytic leukemia cells by THP-1 monocytes
.
J Immunol
.
2006
;
176
(
4
):
2600
-
2609
.
41.
Beum
PV
,
Mack
DA
,
Pawluczkowycz
AW
,
Lindorfer
MA
,
Taylor
RP
.
Binding of rituximab, trastuzumab, cetuximab, or mAb T101 to cancer cells promotes trogocytosis mediated by THP-1 cells and monocytes
.
J Immunol
.
2008
;
181
(
11
):
8120
-
8132
.
42.
Lindorfer
MA
,
Taylor
RP
.
FcγR-mediated trogocytosis 2.0: revisiting history gives rise to a unifying hypothesis
.
Antibodies (Basel)
.
2022
;
11
(
3
):
45
.
43.
Kennedy
AD
,
Beum
PV
,
Solga
MD
, et al
.
Rituximab infusion promotes rapid complement depletion and acute CD20 loss in chronic lymphocytic leukemia
.
J Immunol
.
2004
;
172
(
5
):
3280
-
3288
.
44.
Laurent
C
,
de Paiva
GR
,
Ysebaert
L
, et al
.
Characterization of bone marrow lymphoid infiltrates after immunochemotherapy for follicular lymphoma
.
Am J Clin Pathol
.
2007
;
128
(
6
):
974
-
980
.
45.
Seliem
RM
,
Freeman
JK
,
Steingart
RH
,
Hasserjian
RP
.
Immunophenotypic changes and clinical outcome in B-cell lymphomas treated with rituximab
.
Appl Immunohistochem Mol Morphol
.
2006
;
14
(
1
):
1418
-
1423
.
46.
Zhou
T
,
Wang
HW
.
Antigen loss after targeted immunotherapy in hematological malignancies
.
Clin Lab Med
.
2021
;
41
(
3
):
4341
-
4357
.
47.
Roeser
A
,
Lazarus
AH
,
Mahevas
M
.
B cells and antibodies in refractory immune thrombocytopenia
.
Br J Haematol
.
2023
;
203
(
1
):
43
-
53
.
48.
Boross
P
,
Jansen
JHM
,
Pastula
A
,
van der Poel
CE
,
Leusen
JHW
.
Both activating and inhibitory Fcγ receptors mediate rituximab-induced trogocytosis of CD20 in mice
.
Immunol Lett
.
2012
;
143
(
1
):
44
-
52
.
49.
Anderson
CL
,
Ganesan
LP
,
Robinson
JM
.
The biology of the classical Fcγ receptors in non-hematopoietic cells
.
Immunol Rev
.
2015
;
268
(
1
):
236
-
240
.
50.
Mates
JM
,
Yao
ZL
,
Cheplowitz
AM
, et al
.
Mouse liver sinusoidal endothelium eliminates HIV-like particles from blood at a rate of 100 million per minute by a second-order kinetic process
.
Front Immunol
.
2017
;
8
:
35
.
51.
James
BH
,
Papakyriacou
P
,
Gardener
MJ
,
Gliddon
L
,
Weston
CJ
,
Lalor
PF
.
The contribution of liver sinusoidal endothelial cells to clearance of therapeutic antibody
.
Front Physiol
.
2021
;
12
:
753833
.
52.
Ganesan
LP
,
Kim
J
,
Wu
Y
, et al
.
FcγRIIb on liver sinusoidal endothelium clears small immune complexes
.
J Immunol
.
2012
;
189
(
10
):
4981
-
4988
.
53.
Datta-Mannan
A
,
Croy
JE
,
Schirtzinger
L
,
Torgerson
S
,
Breyer
M
,
Wroblewski
VJ
.
Aberrant bispecific antibody pharmacokinetics linked to liver sinusoidal endothelium clearance mechanism in cynomolgus monkeys
.
MAbs
.
2016
;
8
(
5
):
969
-
982
.
54.
Huang
ZY
,
Chien
P
,
Indik
ZK
,
Schreiber
AD
.
Human platelet FcgRIIA and phagocytes in immune-complex clearance
.
Mol Immunol
.
2011
;
48
(
4
):
691
-
696
.
55.
Guffroy
M
,
Falahatpisheh
H
,
Biddle
K
, et al
.
Liver microvascular injury and thrombocytopenia of antibody-calicheamicin conjugates in cynomolgus monkeys-mechanism and monitoring
.
Clin Cancer Res
.
2017
;
23
(
7
):
1760
-
1770
.
56.
Zhou
P
,
Comenzo
RL
,
Olshen
AB
, et al
.
CD32B is highly expressed on clonal plasma cells from patients with systemic light-chain amyloidosis and provides a target for monoclonal antibody-based therapy
.
Blood
.
2008
;
111
(
7
):
3403
-
3406
.
57.
Jiang
VC
,
Liu
Y
,
Jordan
A
, et al
.
Targeting Fc gamma RIIB by antagonistic antibody BI-1206 improves the efficacy of rituximab-based therapies in aggressive mantle cell lymphoma
.
J Hematol Oncol
.
2022
;
15
(
1
):
42
.
58.
Gorovits
B
,
Krinos-Fiorotti
C
.
Proposed mechanism of off-target toxicity for antibody-drug conjugates driven by mannose receptor uptake
.
Cancer Immunol Immunother
.
2013
;
62
(
2
):
217
-
223
.
59.
Wang
X
,
Yao
C
,
Jiang
Z
.
Conjugation of methotrexate to immunoglobulin kills macrophages by Fc receptor mediated uptake?
.
Int J Lab Hematol
.
2008
;
30
(
3
):
185
-
190
.
60.
Cortes
J
,
Kim
S
,
Chung
W
, et al
.
Trastuzumab deruxtecan versus trastuzumab emtansine for breast cancer
.
N Engl J Med
.
2022
;
386
(
12
):
1143
-
1154
.
61.
Meric-Bernstam
F
,
Makker
V
,
Oaknin
A
, et al
.
Efficacy and safety of trastuzumab deruxtecan in patients with HER2-expressing solid tumors: primary results from the DESTINY-PanTumor02 phase II trial
.
J Clin Oncol
.
2024
;
42
(
1
):
47
-
58
.
62.
Aoyama
M
,
Tada
M
,
Yokoo
H
,
Demizu
Y
,
Ishii-Watabe
A
.
Fcγ receptor-dependent internalization and off-target cytotoxicity of antibody-drug conjugate aggregates
.
Pharm Res
.
2022
;
39
(
17
):
89
-
103
.
63.
King
HD
,
Dubowchik
G
,
Mastalerz
H
, et al
.
Monoclonal antibody conjugates of doxorubicin prepared with branched peptide linkers: inhibition of aggregation by methoxytriethylene glycol chains
.
J Med Chem
.
2002
;
45
(
19
):
4336
-
4343
.
64.
Uppal
H
,
Doudement
E
,
Mahapatra
K
, et al
.
Potential mechanisms for thrombocytopenia development with trastuzumab emtansine (T-DM1)
.
Clin Cancer Res
.
2014
;
21
(
1
):
123
-
133
.
65.
Thon
JN
,
Devine
M
,
Jurak Begonja
A
,
Tibbitts
J
,
Italiano
J
.
High-content live-cell imaging assay used to establish mechanism of trastuzumab emtansine (T-DM1)-mediated inhibition of platelet production
.
Blood
.
2012
;
120
(
10
):
1975
-
1984
.
66.
Leung
AYH
,
Liang
R
.
Thrombocytopenia after gemtuzumab is reversible by intravenous immunoglobulin
.
Leukemia
.
2005
;
19
(
6
):
1077
-
1078
.
67.
Freeman
SD
,
Thomas
A
,
Thomas
I
, et al
.
Fractionated vs single-dose gemtuzumab ozogamicin with determinants of benefit in older patients with AML: the UK NCRI AML18 trial
.
Blood
.
2023
;
142
(
20
):
1697
-
1707
.
68.
Katz
J
.
Intravenous immunoglobulin
.
Medscape
.
Updated 21 April 2023
.
69.
Velikova
T
,
Sekulovski
M
,
Bodganova
S
, et al
.
Intravenus immunoglobulins as immunomodulators in autoimmune diseases and reproductive medicine
.
Antibodies (Basel)
.
2023
;
12
(
1
):
20
.
70.
Nagelkerke
SQ
,
Dekkers
G
,
Kustiawan
I
, et al
.
Inhibition of FcgammaR-mediated phagocytosis by IGIg is independent of IgG-Fc sialylation and FcgammaRIIb in human macrophages
.
Blood
.
2014
;
124
(
25
):
3709
-
3718
.
71.
Gonzalez-Quintela
A
,
Alende
R
,
Gude
F
, et al
.
Serum levels of immunoglobulins (IgG, IgA, IgM) in a general adult population and their relationship with alcohol consumption, smoking and common metabolic abnormalities
.
Clin Exp Immunol
.
2007
;
151
(
1
):
42
-
50
.
72.
Kurlander
RJ
.
Blockade of Fc receptor-mediated binding to U-937 cells by murine monoclonal antibodies directed against a variety of surface antigens
.
J Immunol
.
1983
;
131
(
1
):
140
-
147
.
73.
Taylor
RP
,
Lindorfer
MA
.
Measurement of trogocytosis: quantitative analyses validated with rigorous controls
.
Curr Protoc
.
2023
;
3
(
10
):
e897
.
74.
Suzuki
E
,
Kataoka
T
,
Hirata
M
, et al
.
Trogocytosis-mediated expression of HER2 on immune cells may be associated with a pathological complete response to trastuzumab-based primary systemic therapy in HER2-overexpressing breast cancer patients
.
BMC Cancer
.
2015
;
15
:
39
.
75.
Matlung
HL
,
Babes
L
,
Zhao
X
, et al
.
Neutrophils kill antibody-opsonized cancer cells by trogocytosis
.
Cell Rep
.
2018
;
23
(
13
):
3946
-
3959
.
76.
Behrens
LM
,
van Egmond
M
,
van den Berg
TK
.
Neutrophils as immune effector cells in antibody therapy in cancer
.
Immunol Rev
.
2023
;
314
(
1
):
280
-
301
.
77.
Velmurugan
R
,
Challa
DK
,
Ram
S
,
Ober
RJ
,
Ward
ES
.
Macrophage-mediated trogocytosis leads to death of antibody-opsonized tumor cells
.
Mol Canc Ther
.
2016
;
15
(
8
):
1879
-
1889
.
78.
Pietrantonio
F
,
Caporale
M
,
Morano
F
, et al
.
HER2 loss in HER2-positive gastric or gastroesophageal cancer after trastuzumab therapy: implication for further clinical research
.
Int J Cancer
.
2016
;
139
(
12
):
2859
-
2864
.
79.
Saeki
H
,
Oki
E
,
Kashiwada
T
, et al
.
Re-evaluation of HER2 status in patients with HER2-positive advanced or recurrent gastric cancer refractory to trastuzumab (KSCC1604)
.
Eur J Cancer
.
2018
;
105
:
41
-
49
.
80.
Vijayaraghavan
S
,
Lipfert
L
,
Chevalier
K
, et al
.
Amivantamab (JNJ-61186372), an Fc enhanced EGFR/cMet bispecific antibody, induces receptor downmodulation and antitumor activity by monocyte/macrophage trogocytosis
.
Mol Cancer Ther
.
2020
;
19
(
10
):
2044
-
2056
.
81.
Kumagai
K
,
Aida
T
,
Tsuchiya
Y
,
Kishino
Y
,
Kai
K
,
Mori
K
.
Interstitial pneumonitis related to trastuzumab deruxtecan, a human epidermal growth factor receptor 2-targeting Ab-drug conjugate, in monkeys
.
Cancer Sci
.
2020
;
111
(
12
):
4636
-
4645
.
82.
Hallowell
RW
,
Amariei
D
,
Danoff
SK
.
Intravenous immunoglobulin as potential adjunct therapy for interstitial lung disease
.
Ann Am Thorac Soc
.
2016
;
13
(
10
):
1682
-
1688
.
83.
Errisuriz
K
,
Bazan
DZ
,
Verduzco
R
,
Guedez
R
.
Trastuzumab-induced interstitial pneumonitis
.
Cureus
.
2023
;
15
(
7
):
e42116
.
84.
Costa
R
,
Costa-Filho
RB
,
Talamantes
SM
, et al
.
Interstitial pneumonitis secondary to trastuzumab: a case report and literature review
.
Case Rep Oncol
.
2017
;
10
(
2
):
524
-
530
.
85.
Bruggeman
CW
,
Houtzager
J
,
Dierdorp
B
, et al
.
Tissue-specific expression of IgG receptors by human macrophages ex vivo
.
PLoS One
.
2019
;
14
(
10
):
e0223264
.
86.
Zhao
H
,
Huang
C
,
Lin
M
,
Zhou
M
,
Huang
C
.
Dynamic detection of HER2 of circulating tumor cells in patients with gastric carcinoma and its clinical application
.
Mol Med Rep
.
2022
;
25
(
5
):
187
.
87.
Yang
C
,
Chen
F
,
Wang
S
,
Xiong
B
.
Circulating tumor cells in gastrointestinal cancers: current status and future perspectives
.
Front Oncol
.
2019
;
9
:
1427
.
88.
Wulfing
P
,
Borchard
J
,
Buerger
H
, et al
.
HER2-positive circulating tumor cells indicate poor clinical outcome in stage I to III breast cancer patients
.
Clin Cancer Res
.
2006
;
12
(
6
):
1715
-
1720
.
89.
Asawa
S
,
Nuesch
M
,
Gvozdenovic
A
,
Aceto
N
.
Circulating tumour cells in gastrointestinal cancers: food for thought?
.
Br J Cancer
.
2023
;
128
(
11
):
1981
-
1990
.
90.
Ignatiadis
M
,
Rothe
F
,
Chaboteaux
C
, et al
.
HER2-positive circulating tumor cells in breast cancer
.
PLOS One
.
2011
;
6
(
1
):
e15624
.
91.
Nicolo
E
,
Serafini
M
,
Munoz-Arcos
L
, et al
.
Real-time assessment of HER2 status in circulating tumor cells of breast cancer patients: methods of detection and clinical implications
.
J Liquid Biopsy
.
2023
;
2
:
100117
.
92.
Morgan
S
,
Amemiya
Y
,
Slodkowska
E
, et al
.
Pilot study on the utility of circulating HER2/Neu levels in the serum of breast cancer patients
.
Anticancer Res
.
2019
;
39
(
10
):
5345
-
5352
.
93.
Moreno-Aspitia
A
,
Hillman
D
,
Dyar
S
, et al
.
Soluble human epidermal growth factor receptor 2 (HER2) levels in patients with HER2-positive breast cancer reeiving chemotherapy with or without trastuzumab
.
Cancer
.
2013
;
119
(
15
):
2675
-
2682
.
94.
Perrier
A
,
Gilgorov
J
,
Lefebvre
G
,
Boissan
M
.
The extracellular domain of Her2 in serum as a biomarker of breast cancer
.
Lab Invest
.
2018
;
98
(
6
):
696
-
707
.
95.
Peckys
DB
,
Korf
U
,
de Jonge
N
.
Local variations of HER2 dimerization in breast cancer cells discovered by correlative fluorescence and liquid electron microscopy
.
Sci Adv
.
2015
;
1
(
6
):
e1500165
.
96.
Scherzer
H
,
Ward
PA
.
Lung injury produced by immune complexes of varying composition
.
J Immunol
.
1978
;
121
(
3
):
947
-
952
.
97.
Carney
WP
,
Bernhardt
D
,
Jasan
ib
.
Circulating HER2 extracellular domain: a specific and quantitative biomarker of prognostic value in all breast cancer patients?
.
Biomark Cancer
.
2013
;
5
:
31
-
39
.
98.
Shock
A
,
Humphreys
DP
,
Nimmerjahn
F
.
Dissecting the mechanism of action of intravenous immunoglobulin in human autoimmue disease: lessons from therapeutic modalities targeting Fcγreceptors
.
J Allergy Clin Immunol
.
2020
;
146
(
3
):
492
-
500
.
99.
Krejcik
J
,
Frerichs
KA
,
Nijhof
IS
, et al
.
Monocytes and granulocytes reduce CD38 expression levels on myeloma cells in patients treated with daratumumab
.
Clin Cancer Res
.
2017
;
23
(
24
):
7498
-
7511
.
You do not currently have access to this content.
Sign in via your Institution