• GSDMD contributes to focal crystalline thrombotic angiopathy and its consequences: ischemic tissue infarction and organ failure.

  • GSDMD drives neutrophil necrosis, maturation, and tissue recruitment during focal crystalline thrombotic angiopathy.

Abstract

Thrombotic microangiopathy (TMA) is characterized by immunothrombosis and life-threatening organ failure but the precise underlying mechanism driving its pathogenesis remains elusive. In this study, we hypothesized that gasdermin D (GSDMD), a pore-forming protein that serves as the final downstream effector of the pyroptosis/interleukin-1β (IL-1β) pathway, contributes to TMA and its consequences by amplifying neutrophil maturation and subsequent necrosis. Using a murine model of focal crystalline TMA, we found that Gsdmd deficiency ameliorated immunothrombosis, acute tissue injury, and failure. Gsdmd−/− mice exhibited a decrease in mature IL-1β, as well as in neutrophil maturation, β2-integrin activation, and recruitment to TMA lesions, in which they formed reduced neutrophil extracellular traps in both arteries and interstitial tissue. The GSDMD inhibitor disulfiram dose-dependently suppressed human neutrophil pyroptosis in response to cholesterol crystals. Experiments with GSDMD–deficient, humaninduced, pluripotent stem cellderived neutrophils confirmed the involvement of GSDMD in neutrophil β2-integrin activation, maturation, and pyroptosis. Both prophylactic and therapeutic administration of disulfiram protected the mice from focal TMA, acute tissue injury, and failure. Our data identified GSDMD as a key mediator of focal crystalline TMA and its consequences, including ischemic tissue infarction and organ failure. GSDMD could potentially serve as a therapeutic target for the systemic forms of TMA.

1.
George
JN
,
Nester
CM
.
Syndromes of thrombotic microangiopathy
.
N Engl J Med
.
2014
;
371
(
7
):
654
-
666
.
2.
Jokiranta
TS
.
HUS and atypical HUS
.
Blood
.
2017
;
129
(
21
):
2847
-
2856
.
3.
Shi
C
,
Kim
T
,
Steiger
S
, et al
.
Crystal clots as therapeutic target in cholesterol crystal embolism
.
Circ Res
.
2020
;
126
(
8
):
e37
-
e52
.
4.
Genest
DS
,
Patriquin
CJ
,
Licht
C
,
John
R
,
Reich
HN
.
Renal thrombotic microangiopathy: a review
.
Am J Kidney Dis
.
2023
;
81
(
5
):
591
-
605
.
5.
Shi
J
,
Zhao
Y
,
Wang
K
, et al
.
Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death
.
Nature
.
2015
;
526
(
7575
):
660
-
665
.
6.
Liu
X
,
Xia
S
,
Zhang
Z
,
Wu
H
,
Lieberman
J
.
Channelling inflammation: gasdermins in physiology and disease
.
Nat Rev Drug Discov
.
2021
;
20
(
5
):
384
-
405
.
7.
Kayagaki
N
,
Stowe
IB
,
Lee
BL
, et al
.
Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling
.
Nature
.
2015
;
526
(
7575
):
666
-
671
.
8.
Sollberger
G
,
Choidas
A
,
Burn
GL
, et al
.
Gasdermin D plays a vital role in the generation of neutrophil extracellular traps
.
Sci Immunol
.
2018
;
3
(
26
):
eaar6689
.
9.
Chen
KW
,
Monteleone
M
,
Boucher
D
, et al
.
Noncanonical inflammasome signaling elicits gasdermin D-dependent neutrophil extracellular traps
.
Sci Immunol
.
2018
;
3
(
26
):
eaar6676
.
10.
Silva
CM
,
Wanderley
CWS
,
Veras
FP
, et al
.
Gasdermin D inhibition prevents multiple organ dysfunction during sepsis by blocking NET formation
.
Blood
.
2021
;
138
(
25
):
2702
-
2713
.
11.
Mulay
SR
,
Linkermann
A
,
Anders
HJ
.
Necroinflammation in kidney disease
.
J Am Soc Nephrol
.
2016
;
27
(
1
):
27
-
39
.
12.
Duewell
P
,
Kono
H
,
Rayner
KJ
, et al
.
NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals
.
Nature
.
2010
;
464
(
7293
):
1357
-
1361
.
13.
Tall
AR
,
Yvan-Charvet
L
.
Cholesterol, inflammation and innate immunity
.
Nat Rev Immunol
.
2015
;
15
(
2
):
104
-
116
.
14.
Warnatsch
A
,
Ioannou
M
,
Wang
Q
,
Papayannopoulos
V
.
Inflammation. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis
.
Science
.
2015
;
349
(
6245
):
316
-
320
.
15.
Engelmann
B
,
Massberg
S
.
Thrombosis as an intravascular effector of innate immunity
.
Nat Rev Immunol
.
2013
;
13
(
1
):
34
-
45
.
16.
Kilkenny
C
,
Browne
WJ
,
Cuthill
IC
,
Emerson
M
,
Altman
DG
.
Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research
.
PLoS Biol
.
2010
;
8
(
6
):
e1000412
.
17.
Nakazawa
D
,
Kumar
SV
,
Marschner
J
, et al
.
Histones and neutrophil extracellular traps enhance tubular necrosis and remote organ injury in ischemic AKI
.
J Am Soc Nephrol
.
2017
;
28
(
6
):
1753
-
1768
.
18.
Chauhan
D
,
Demon
D
,
Vande Walle
L
, et al
.
GSDMD drives canonical inflammasome-induced neutrophil pyroptosis and is dispensable for NETosis
.
EMBO Rep
.
2022
;
23
(
10
):
e54277
.
19.
Yao
W
,
Chen
Y
,
Li
Z
, et al
.
Single cell RNA sequencing identifies a unique inflammatory macrophage subset as a druggable target for alleviating acute kidney injury
.
Adv Sci (Weinh)
.
2022
;
9
(
12
):
e2103675
.
20.
Ng
LG
,
Ostuni
R
,
Hidalgo
A
.
Heterogeneity of neutrophils
.
Nat Rev Immunol
.
2019
;
19
(
4
):
255
-
265
.
21.
Xie
X
,
Shi
Q
,
Wu
P
, et al
.
Single-cell transcriptome profiling reveals neutrophil heterogeneity in homeostasis and infection
.
Nat Immunol
.
2020
;
21
(
9
):
1119
-
1133
.
22.
Kolaczkowska
E
,
Kubes
P
.
Neutrophil recruitment and function in health and inflammation
.
Nat Rev Immunol
.
2013
;
13
(
3
):
159
-
175
.
23.
Silvestre-Roig
C
,
Hidalgo
A
,
Soehnlein
O
.
Neutrophil heterogeneity: implications for homeostasis and pathogenesis
.
Blood
.
2016
;
127
(
18
):
2173
-
2181
.
24.
Ma
Q
,
Immler
R
,
Pruenster
M
, et al
.
Soluble uric acid inhibits β2 integrin-mediated neutrophil recruitment in innate immunity
.
Blood
.
2022
;
139
(
23
):
3402
-
3417
.
25.
Nemeth
T
,
Sperandio
M
,
Mocsai
A
.
Neutrophils as emerging therapeutic targets
.
Nat Rev Drug Discov
.
2020
;
19
(
4
):
253
-
275
.
26.
Schaefer
SL
,
Hummer
G
.
Sublytic gasdermin-D pores captured in atomistic molecular simulations
.
Elife
.
2022
;
11
:
e81432
.
27.
Miao
N
,
Yin
F
,
Xie
H
, et al
.
The cleavage of gasdermin D by caspase-11 promotes tubular epithelial cell pyroptosis and urinary IL-18 excretion in acute kidney injury
.
Kidney Int
.
2019
;
96
(
5
):
1105
-
1120
.
28.
Zhang
Z
,
Shao
X
,
Jiang
N
, et al
.
Caspase-11-mediated tubular epithelial pyroptosis underlies contrast-induced acute kidney injury
.
Cell Death Dis
.
2018
;
9
(
10
):
983
.
29.
Tonnus
W
,
Maremonti
F
,
Belavgeni
A
, et al
.
Gasdermin D-deficient mice are hypersensitive to acute kidney injury
.
Cell Death Dis
.
2022
;
13
(
9
):
792
.
30.
Desai
J
,
Foresto-Neto
O
,
Honarpisheh
M
, et al
.
Particles of different sizes and shapes induce neutrophil necroptosis followed by the release of neutrophil extracellular trap-like chromatin
.
Sci Rep
.
2017
;
7
(
1
):
15003
.
31.
Schett
G
,
Dayer
JM
,
Manger
B
.
Interleukin-1 function and role in rheumatic disease
.
Nat Rev Rheumatol
.
2016
;
12
(
1
):
14
-
24
.
32.
Miller
LS
,
O'Connell
RM
,
Gutierrez
MA
, et al
.
MyD88 mediates neutrophil recruitment initiated by IL-1R but not TLR2 activation in immunity against Staphylococcus aureus
.
Immunity
.
2006
;
24
(
1
):
79
-
91
.
33.
Rolfes
V
,
Ribeiro
LS
,
Hawwari
I
, et al
.
Platelets fuel the inflammasome activation of innate immune cells
.
Cell Rep
.
2020
;
31
(
6
):
107615
.
34.
Wang
X
,
Blanco
LP
,
Carmona-Rivera
C
, et al
.
Effects of gasdermin D in modulating murine lupus and its associated organ damage
.
Arthritis Rheumatol
.
2020
;
72
(
12
):
2118
-
2129
.
35.
Manz
MG
,
Boettcher
S
.
Emergency granulopoiesis
.
Nat Rev Immunol
.
2014
;
14
(
5
):
302
-
314
.
36.
Inra
CN
,
Zhou
BO
,
Acar
M
, et al
.
A perisinusoidal niche for extramedullary haematopoiesis in the spleen
.
Nature
.
2015
;
527
(
7579
):
466
-
471
.
37.
Silvestre-Roig
C
,
Braster
Q
,
Ortega-Gomez
A
,
Soehnlein
O
.
Neutrophils as regulators of cardiovascular inflammation
.
Nat Rev Cardiol
.
2020
;
17
(
6
):
327
-
340
.
38.
Palomino-Segura
M
,
Sicilia
J
,
Ballesteros
I
,
Hidalgo
A
.
Strategies of neutrophil diversification
.
Nat Immunol
.
2023
;
24
(
4
):
575
-
584
.
39.
Hu
JJ
,
Liu
X
,
Xia
S
, et al
.
FDA-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation
.
Nat Immunol
.
2020
;
21
(
7
):
736
-
745
.
You do not currently have access to this content.
Sign in via your Institution