Abstract

In this last decade, a deeper understanding of the pathophysiology of hereditary red cell disorders and the development of novel classes of pharmacologic agents have provided novel therapeutic approaches to thalassemias, sickle cell disease (SCD), and other red cell disorders. Here, we analyze and discuss the novel therapeutic options according to their targets, taking into consideration the complex process of erythroid differentiation, maturation, and survival of erythrocytes in the peripheral circulation. We focus on active clinical exploratory and confirmatory trials on thalassemias, SCD, and other red cell disorders. Beside β-thalassemia and SCD, we found that the development of new therapeutic strategies has allowed for the design of clinic studies for hereditary red cell disorders still lacking valuable therapeutic alternative such as α-thalassemias, congenital dyserythropoietic anemia, or Diamond-Blackfan anemia. In addition, reduction of heme synthesis, which can be achieved by the repurposed antipsychotic drug bitopertin, might affect not only hematological disorders but multiorgan diseases such as erythropoietic protoporphyria. Finally, our review highlights the current state of therapeutic scenarios, in which multiple indications targeting different red cell disorders are being considered for a single agent. This is a welcome change that will hopefully expand therapeutic option for patients affected by thalassemias, SCD, and other red cell disorders.

1.
Kassebaum
NJ
,
Jasrasaria
R
,
Naghavi
M
, et al
.
A systematic analysis of global anemia burden from 1990 to 2010
.
Blood
.
2014
;
123
(
5
):
615
-
624
.
2.
Murray
CJ
,
Vos
T
,
Lozano
R
, et al
.
Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010
.
Lancet
.
2012
;
380
(
9859
):
2197
-
2223
.
3.
Piel
FB
,
Rees
DC
,
DeBaun
MR
, et al
.
Defining global strategies to improve outcomes in sickle cell disease: a Lancet Haematology Commission
.
Lancet Haematol
.
2023
;
10
(
8
):
e633
-
e686
.
4.
Musallam
KM
,
Taher
AT
,
Kattamis
A
,
Kuo
KHM
,
Sheth
S
.
Cappellini MD Profile of luspatercept in the treatment of anemia in adults with non-transfusion-dependent beta-thalassemia (NTDT): design, development and potential place in therapy
.
Drug Des Devel Ther
.
2023
;
17
:
1583
-
1591
.
5.
Roessler
HI
,
Knoers
N
,
van Haelst
MM
,
van Haaften
G
.
Drug repurposing for rare diseases
.
Trends Pharmacol Sci
.
2021
;
42
(
4
):
255
-
267
.
6.
Fattizzo
B
,
Cavallaro
F
,
Marcello
A
,
Vercellati
C
,
Barcellini
W
.
Pyruvate kinase deficiency: current challenges and future prospects
.
J Blood Med
.
2022
;
13
:
461
-
471
.
7.
Risitano
AM
,
Peffault de Latour
R
.
How we('ll) treat paroxysmal nocturnal haemoglobinuria: diving into the future
.
Br J Haematol
.
2022
;
196
(
2
):
288
-
303
.
8.
Berentsen
S
,
Barcellini
W
.
Autoimmune hemolytic anemias
.
N Engl J Med
.
2021
;
385
(
15
):
1407
-
1419
.
9.
Cazzola
M
.
Ineffective erythropoiesis and its treatment
.
Blood
.
2022
;
139
(
16
):
2460
-
2470
.
10.
Steinberg
MH
.
Fetal hemoglobin in sickle cell anemia
.
Blood
.
2020
;
136
(
21
):
2392
-
2400
.
11.
Guerra
A
,
Oikonomidou
PR
,
Sinha
S
, et al
.
Lack of Gdf11 does not improve anemia or prevent the activity of RAP-536 in a mouse model of beta-thalassemia
.
Blood
.
2019
;
134
(
6
):
568
-
572
.
12.
Jann
J
,
Gascon
S
,
Roux
S
,
Faucheux
N
.
Influence of the TGF-beta superfamily on osteoclasts/osteoblasts balance in physiological and pathological bone conditions
.
Int J Mol Sci
.
2020
;
21
(
20
):
7597
.
13.
Dussiot
M
,
Maciel
TT
,
Fricot
A
, et al
.
An activin receptor IIA ligand trap corrects ineffective erythropoiesis in beta-thalassemia
.
Nat Med
.
2014
;
20
(
4
):
398
-
407
.
14.
Sanchez-Duffhues
G
,
Hiepen
C
,
Knaus
P
,
Ten Dijke
P
.
Bone morphogenetic protein signaling in bone homeostasis
.
Bone
.
2015
;
80
:
43
-
59
.
15.
Cappellini
MD
,
Viprakasit
V
,
Taher
AT
, et al
.
A phase 3 trial of luspatercept in patients with transfusion-dependent beta-thalassemia
.
N Engl J Med
.
2020
;
382
(
13
):
1219
-
1231
.
16.
Taher
AT
,
Cappellini
MD
,
Kattamis
A
, et al
.
Luspatercept for the treatment of anaemia in non-transfusion-dependent beta-thalassaemia (BEYOND): a phase 2, randomised, double-blind, multicentre, placebo-controlled trial
.
Lancet Haematol
.
2022
;
9
(
10
):
e733
-
e744
.
17.
Piga
A
,
Longo
F
,
Gamberini
MR
, et al
.
Long-term safety and erythroid response with luspatercept treatment in patients with beta-thalassemia
.
Ther Adv Hematol
.
2022
;
13
:
20406207221134404
.
18.
Hermine
O
,
Cappellini
MDD
,
Taher
AT
, et al
.
Effect of luspatercept on red blood cell (RBC) transfusion burden, iron chelation therapy (ICT), and iron overload in adults with transfusion-dependent β-thalassemia (TDT) from the BELIEVE trial: a long-term analysis [abstract]
.
Blood
.
2022
;
140
(
suppl 1
):
8215
-
8217
.
19.
Piga
A
,
Perrotta
S
,
Gamberini
MR
, et al
.
Luspatercept improves hemoglobin levels and blood transfusion requirements in a study of patients with beta-thalassemia
.
Blood
.
2019
;
133
(
12
):
1279
-
1289
.
20.
Wobus
M
,
Mies
A
,
Asokan
N
, et al
.
Luspatercept restores SDF-1-mediated hematopoietic support by MDS-derived mesenchymal stromal cells
.
Leukemia
.
2021
;
35
(
10
):
2936
-
2947
.
21.
Shalev
O
,
Repka
T
,
Goldfarb
A
, et al
.
Deferiprone (L1) chelates pathologic iron deposits from membranes of intact thalassemic and sickle red blood cells both in vitro and in vivo
.
Blood
.
1995
;
86
(
5
):
2008
-
2013
.
22.
Shalev
O
,
Hebbel
RP
.
Catalysis of soluble hemoglobin oxidation by free iron on sickle red cell membranes
.
Blood
.
1996
;
87
(
9
):
3948
-
3952
.
23.
Browne
P
,
Shalev
O
,
Hebbel
RP
.
The molecular pathobiology of cell membrane iron: the sickle red cell as a model
.
Free Radic Biol Med
.
1998
;
24
(
6
):
1040
-
1048
.
24.
de Franceschi
L
,
Shalev
O
,
Piga
A
, et al
.
Deferiprone therapy in homozygous human beta-thalassemia removes erythrocyte membrane free iron and reduces KCl cotransport activity
.
J Lab Clin Med
.
1999
;
133
(
1
):
64
-
69
.
25.
Rivella
S
.
Iron metabolism under conditions of ineffective erythropoiesis in beta-thalassemia
.
Blood
.
2019
;
133
(
1
):
51
-
58
.
26.
Kautz
L
,
Jung
G
,
Valore
EV
,
Rivella
S
,
Nemeth
E
,
Ganz
T
.
Identification of erythroferrone as an erythroid regulator of iron metabolism
.
Nat Genet
.
2014
;
46
(
7
):
678
-
684
.
27.
Muckenthaler
MU
,
Rivella
S
,
Hentze
MW
,
Galy
B
.
A red carpet for iron metabolism
.
Cell
.
2017
;
168
(
3
):
344
-
361
.
28.
Kattamis
A
,
Papassotiriou
I
,
Palaiologou
D
, et al
.
The effects of erythropoetic activity and iron burden on hepcidin expression in patients with thalassemia major
.
Haematologica
.
2006
;
91
(
6
):
809
-
812
.
29.
Casu
C
,
Aghajan
M
,
Oikonomidou
PR
,
Guo
S
,
Monia
BP
,
Rivella
S
.
Combination of Tmprss6- ASO and the iron chelator deferiprone improves erythropoiesis and reduces iron overload in a mouse model of beta-thalassemia intermedia
.
Haematologica
.
2016
;
101
(
1
):
e8
-
e11
.
30.
Preza
GC
,
Ruchala
P
,
Pinon
R
, et al
.
Minihepcidins are rationally designed small peptides that mimic hepcidin activity in mice and may be useful for the treatment of iron overload
.
J Clin Invest
.
2011
;
121
(
12
):
4880
-
4888
.
31.
Manolova
V
,
Nyffenegger
N
,
Flace
A
, et al
.
Oral ferroportin inhibitor ameliorates ineffective erythropoiesis in a model of beta-thalassemia
.
J Clin Invest
.
2019
;
130
(
1
):
491
-
506
.
32.
Li
H
,
Rybicki
AC
,
Suzuka
SM
, et al
.
Transferrin therapy ameliorates disease in beta-thalassemic mice
.
Nat Med
.
2010
;
16
(
2
):
177
-
182
.
33.
Taher
A
,
Kourakli-Symeonidis
A
,
Tantiworawit
A
,
Wong
P
,
Szecsody
P
.
Safety and preliminary pharmacodynamic effects of the ferroportin inhibitor vamifeport (VIT-2763) in patients with non-transfusion-dependent beta thalassemia (NTDT): results from phase 2A study
.
HemaSphere
.
2022
;
6
:
173
-
174
.
34.
Taher
AT
,
Viprakasit
V
,
Cappellini
MD
, et al
.
Haematological effects of oral administration of bitopertin, a glycine transport inhibitor, in patients with non-transfusion-dependent beta-thalassaemia
.
Br J Haematol
.
2021
;
194
(
2
):
474
-
477
.
35.
Garcia-Santos
D
,
Hamdi
A
,
Saxova
Z
, et al
.
Inhibition of heme oxygenase ameliorates anemia and reduces iron overload in a beta-thalassemia mouse model
.
Blood
.
2018
;
131
(
2
):
236
-
246
.
36.
Matte
A
,
Federti
E
,
Winter
M
, et al
.
Bitopertin, a selective oral GLYT1 inhibitor, improves anemia in a mouse model of beta-thalassemia
.
JCI Insight
.
2019
;
4
(
22
):
e130111
.
37.
Rio
S
,
Gastou
M
,
Karboul
N
, et al
.
Regulation of globin-heme balance in Diamond-Blackfan anemia by HSP70/GATA1
.
Blood
.
2019
;
133
(
12
):
1358
-
1370
.
38.
Halloy
F
,
Iyer
PS
,
Ghidini
A
, et al
.
Repurposing of glycine transport inhibitors for the treatment of erythropoietic protoporphyria
.
Cell Chem Biol
.
2021
;
28
(
8
):
1221
-
1234.e6
.
39.
Kuter
DJ
,
Bonkovsky
HL
,
Monroy
S
, et al
.
Efficacy and safety of givosiran for acute hepatic porphyria: final results of the randomized phase III ENVISION trial
.
J Hepatol
.
2023
;
79
(
5
):
1150
-
1158
.
40.
Balwani
M
,
Sardh
E
,
Ventura
P
, et al
.
Phase 3 trial of RNAi therapeutic givosiran for acute intermittent porphyria
.
N Engl J Med
.
2020
;
382
(
24
):
2289
-
2301
.
41.
Knight
ZA
,
Schmidt
SF
,
Birsoy
K
,
Tan
K
,
Friedman
JM
.
A critical role for mTORC1 in erythropoiesis and anemia
.
Elife
.
2014
;
3
:
e01913
.
42.
Lupo
F
,
Tibaldi
E
,
Matte
A
, et al
.
A new molecular link between defective autophagy and erythroid abnormalities in chorea-acanthocytosis
.
Blood
.
2016
;
128
(
25
):
2976
-
2987
.
43.
Bruchova
H
,
Yoon
D
,
Agarwal
AM
,
Swierczek
S
,
Prchal
JT
.
Erythropoiesis in polycythemia vera is hyper-proliferative and has accelerated maturation
.
Blood Cells Mol Dis
.
2009
;
43
(
1
):
81
-
87
.
44.
Nemeth
E
,
Ganz
T
.
Hepcidin and iron in health and disease
.
Annu Rev Med
.
2023
;
74
:
261
-
277
.
45.
Aschemeyer
S
,
Qiao
B
,
Stefanova
D
, et al
.
Structure-function analysis of ferroportin defines the binding site and an alternative mechanism of action of hepcidin
.
Blood
.
2018
;
131
(
8
):
899
-
910
.
46.
Bennett
C
,
Jackson
VE
,
Pettikiriarachchi
A
, et al
.
Iron homeostasis governs erythroid phenotype in polycythemia vera
.
Blood
.
2023
;
141
(
26
):
3199
-
3214
.
47.
Haddy
TB
,
Castro
O
.
Overt iron deficiency in sickle cell disease
.
Arch Intern Med
.
1982
;
142
(
9
):
1621
-
1624
.
48.
Castro
O
,
Poillon
WN
,
Finke
H
,
Massac
E
.
Improvement of sickle cell anemia by iron-limited erythropoiesis
.
Am J Hematol
.
1994
;
47
(
2
):
74
-
81
.
49.
Bouchair
N
,
Manigne
P
,
Kanfer
A
, et al
.
[Prevention of sickle cell crises with multiple phlebotomies]
.
Arch Pediatr
.
2000
;
7
(
3
):
249
-
255
.
50.
Rombos
Y
,
Tzanetea
R
,
Kalotychou
V
, et al
.
Amelioration of painful crises in sickle cell disease by venesections
.
Blood Cells Mol Dis
.
2002
;
28
(
2
):
283
-
287
.
51.
Castro
OL
,
De Franceschi
L
,
Ganz
T
, et al
.
Iron restriction in sickle cell disease: when less is more
.
Am J Hematol
.
2024
;
99
(
7
):
1349
-
1359
.
52.
Parrow
NL
,
Violet
PC
,
George
NA
, et al
.
Dietary iron restriction improves markers of disease severity in murine sickle cell anemia
.
Blood
.
2021
;
137
(
11
):
1553
-
1555
.
53.
Nyffenegger
N
,
Zennadi
R
,
Kalleda
N
, et al
.
The oral ferroportin inhibitor vamifeport improves hemodynamics in a mouse model of sickle cell disease
.
Blood
.
2022
;
140
(
7
):
769
-
781
.
54.
Matte
A
,
Federti
E
,
De Franceschi
L
.
Erythrocyte pyruvate kinase activation in red cell disorders
.
Curr Opin Hematol
.
2023
;
30
(
3
):
93
-
98
.
55.
Ogasawara
Y
,
Funakoshi
M
,
Ishii
K
.
Glucose metabolism is accelerated by exposure to t-butylhydroperoxide during NADH consumption in human erythrocytes
.
Blood Cells Mol Dis
.
2008
;
41
(
3
):
237
-
243
.
56.
De Franceschi
L
,
Bertoldi
M
,
Matte
A
, et al
.
Oxidative stress and beta-thalassemic erythroid cells behind the molecular defect
.
Oxid Med Cell Longev
.
2013
;
2013
:
985210
.
57.
Zanella
A
,
Fermo
E
,
Bianchi
P
,
Valentini
G
.
Red cell pyruvate kinase deficiency: molecular and clinical aspects
.
Br J Haematol
.
2005
;
130
(
1
):
11
-
25
.
58.
Andres
O
,
Loewecke
F
,
Morbach
H
, et al
.
Hereditary spherocytosis is associated with decreased pyruvate kinase activity due to impaired structural integrity of the red blood cell membrane
.
Br J Haematol
.
2019
;
187
(
3
):
386
-
395
.
59.
Al-Samkari
H
,
van Beers
EJ
.
Mitapivat, a novel pyruvate kinase activator, for the treatment of hereditary hemolytic anemias
.
Ther Adv Hematol
.
2021
;
12
:
20406207211066070
.
60.
Cappellini
MD
,
Marcon
A
,
Fattizzo
B
,
Motta
I
.
Innovative treatments for rare anemias
.
Hemasphere
.
2021
;
5
(
6
):
e576
.
61.
De Franceschi
L
,
Olivieri
O
,
Miraglia del Giudice
E
, et al
.
Membrane cation and anion transport activities in erythrocytes of hereditary spherocytosis: effects of different membrane protein defects
.
Am J Hematol
.
1997
;
55
(
3
):
121
-
128
.
62.
Matte
A
,
Cappellini
MD
,
Iolascon
A
,
Enrica
F
,
De Franceschi
L
.
Emerging drugs in randomized controlled trials for sickle cell disease: are we on the brink of a new era in research and treatment?
.
Expert Opin Investig Drugs
.
2020
;
29
(
1
):
23
-
31
.
63.
D'Alessandro
A
,
Anastasiadi
AT
,
Tzounakas
VL
, et al
.
Red blood cell metabolism in vivo and in vitro
.
Metabolites
.
2023
;
13
(
7
):
793
.
64.
Al-Samkari
H
,
Galacteros
F
,
Glenthøj
A
, et al
.
Mitapivat versus placebo for pyruvate kinase deficiency
.
N Engl J Med
.
2022
;
386
(
15
):
1432
-
1442
.
65.
Glenthøj
A
,
van Beers
EJ
,
Al-Samkari
H
, et al
.
Mitapivat in adult patients with pyruvate kinase deficiency receiving regular transfusions (ACTIVATE-T): a multicentre, open-label, single-arm, phase 3 trial
.
Lancet Haematol
.
2022
;
9
(
10
):
e724
-
e732
.
66.
Matte
A
,
Federti
E
,
Kung
C
, et al
.
The pyruvate kinase activator mitapivat reduces hemolysis and improves anemia in a beta-thalassemia mouse model
.
J Clin Invest
.
2021
;
131
(
10
):
e144206
.
67.
Matte
A
,
Kosinski
PA
,
Federti
E
, et al
.
Mitapivat, a pyruvate kinase activator, improves transfusion burden and reduces iron overload in beta-thalassemic mice
.
Haematologica
.
2023
;
108
(
9
):
2535
-
2541
.
68.
Musallam
KM
,
Taher
AT
,
Cappellini
MD
.
Right in time: mitapivat for the treatment of anemia in alpha- and beta-thalassemia
.
Cell Rep Med
.
2022
;
3
(
10
):
100790
.
69.
Kuo
KHM
,
Layton
DM
,
Lal
A
, et al
.
Safety and efficacy of mitapivat, an oral pyruvate kinase activator, in adults with non-transfusion dependent alpha-thalassaemia or beta-thalassaemia: an open-label, multicentre, phase 2 study
.
Lancet
.
2022
;
400
(
10351
):
493
-
501
.
70.
Iolascon
A
,
Andolfo
I
,
Russo
R
.
Congenital dyserythropoietic anemias
.
Blood
.
2020
;
136
(
11
):
1274
-
1283
.
71.
Aizawa
S
,
Harada
T
,
Kanbe
E
, et al
.
Ineffective erythropoiesis in mutant mice with deficient pyruvate kinase activity
.
Exp Hematol
.
2005
;
33
(
11
):
1292
-
1298
.
72.
Aizawa
S
,
Kohdera
U
,
Hiramoto
M
, et al
.
Ineffective erythropoiesis in the spleen of a patient with pyruvate kinase deficiency
.
Am J Hematol
.
2003
;
74
(
1
):
68
-
72
.
73.
Matte
A
,
Wilson
AB
,
Gevi
F
, et al
.
Mitapivat reprograms the RBC metabolome and improves anemia in a mouse model of hereditary spherocytosis
.
JCI Insight
.
2023
;
8
(
20
):
e172656
.
74.
Jensen
M
,
Shohet
SB
,
Nathan
DG
.
The role of red cell energy metabolism in the generation of irreversibly sickled cells in vitro
.
Blood
.
1973
;
42
(
6
):
835
-
842
.
75.
Poillon
WN
,
Robinson
MD
,
Kim
BC
.
Deoxygenated sickle hemoglobin. Modulation of its solubility by 2,3-diphosphoglycerate and other allosteric polyanions
.
J Biol Chem
.
1985
;
260
(
26
):
13897
-
13900
.
76.
Rab
MAE
,
Bos
J
,
van Oirschot
BA
, et al
.
Decreased activity and stability of pyruvate kinase in sickle cell disease: a novel target for mitapivat therapy
.
Blood
.
2021
;
137
(
21
):
2997
-
3001
.
77.
Quezado
ZMN
,
Kamimura
S
,
Smith
M
, et al
.
Mitapivat increases ATP and decreases oxidative stress and erythrocyte mitochondria retention in a SCD mouse model
.
Blood Cells Mol Dis
.
2022
;
95
:
102660
.
78.
Xu
JZ
,
Conrey
A
,
Frey
I
, et al
.
A phase 1 dose escalation study of the pyruvate kinase activator mitapivat (AG-348) in sickle cell disease
.
Blood
.
2022
;
140
(
19
):
2053
-
2062
.
79.
D’Alessandro
A
,
Le
K
,
Lundt
M
, et al
.
Functional and multi-omics signatures of mitapivat efficacy upon activation of pyruvate kinase in red blood cells from patients with sickle cell disease
.
Haematologica
.
Published online 7 March 2024
.
80.
van Dijk
MJ
,
Rab
MAE
,
van Oirschot
BA
, et al
.
Safety and efficacy of mitapivat, an oral pyruvate kinase activator, in sickle cell disease: a phase 2, open-label study
.
Am J Hematol
.
2022
;
97
(
7
):
E226
-
E229
.
81.
Conrey
A
,
Frey
I
,
Asomaning
N
, et al
.
Long-term safety and efficacy of mitapivat, an oral pyruvate kinase activator, in adults with sickle cell disease: extension of a phase 1 dose escalation study [abstract]
.
Blood
.
2023
;
142
(
suppl 1
):
273
-
275
.
82.
Idowu
M
,
Otieno
L
,
Dumitriu
B
, et al
.
A phase 2/3, double-blind, randomized, placebo-controlled, multicenter study of mitapivat in patients with sickle cell disease: RISE UP phase 2 results [abstract]
.
Blood
.
2023
;
142
(
suppl 1
):
271
-
273
.
83.
Rab
MAE
,
Van Oirschot
BA
,
Kosinski
PA
, et al
.
AG-348 (Mitapivat), an allosteric activator of red blood cell pyruvate kinase, increases enzymatic activity, protein stability, and ATP levels over a broad range of PKLR genotypes
.
Haematologica
.
2021
;
106
(
1
):
238
-
249
.
84.
Xu
JZ
,
Vercellotti
GM
.
Pyruvate kinase activators: targeting red cell metabolism in sickle cell disease
.
Hematology Am Soc Hematol Educ Program
.
2023
;
2023
(
1
):
107
-
113
.
85.
Gurov
XD
,
Merica
E
,
Iyer
V
, et al
.
Results from the single and multiple acending dose study to assess the safety, tolerability, pharmacokinetics and pharmacodynamics of AG-946 in heathy volunteers [abstract]
.
Blood
.
2022
;
140
(
suppl 1
):
5426
-
5427
.
86.
Forsyth
S
,
Schroeder
P
,
Geib
J
, et al
.
Safety, pharmacokinetics, and pharmacodynamics of etavopivat (FT-4202), an allosteric activator of pyruvate kinase-R, in healthy adults: a randomized, placebo-controlled,double-blind, first-in-human phase 1 trial
.
Clin Pharmacol Drug Dev
.
2022
;
11
(
5
):
654
-
665
.
87.
Telen
M
,
Brown
R
,
Hagar
R
, et al
.
Etavopivat treatemnt for up to 12 weeks in patients with sickle cell disease is well tolerated and improves red blood cell health
.
Hemasphere
.
2022
;
6
(
suppl
):
02
-
03
.
88.
Niihara
Y
,
Miller
ST
,
Kanter
J
, et al
.
A phase 3 trial of l-glutamine in sickle cell disease
.
N Engl J Med
.
2018
;
379
(
3
):
226
-
235
.
89.
Sadaf
A
,
Quinn
CT
.
L-glutamine for sickle cell disease: knight or pawn?
.
Exp Biol Med (Maywood)
.
2020
;
245
(
2
):
146
-
154
.
90.
Quinn
CT
.
l-Glutamine for sickle cell anemia: more questions than answers
.
Blood
.
2018
;
132
(
7
):
689
-
693
.
91.
Vichinsky
E
,
Hoppe
CC
,
Ataga
KI
, et al
.
A phase 3 randomized trial of voxelotor in sickle cell disease
.
N Engl J Med
.
2019
;
381
(
6
):
509
-
519
.
92.
Achebe
MO
,
Hassab
HMA
,
Al-Kindi
S
, et al
.
Over 4 years of safety and efficacy with voxelotor treatment for patients with sickle cell disease: update results from an open-label extension of the phase 3 HOPE trial [abstract]
.
Blood
.
2023
;
142
(
suppl 1
):
2527
-
2529
.
93.
Andemarian
B
,
Billett
HH
,
Ershler
WB
, et al
.
Real-world experience of individuals with sickle cell disease treated with voxelotor: initial report from the multicenter, prospective prospect study [abstract]
.
Blood
.
2023
;
142
(
suppl 1
):
2499
-
2501
.
94.
Saraf
SL
,
Abdullahi
SU
,
Akinsete
AM
, et al
.
Preliminary results from a multicenter phase 2/3 study of next-generation HbS polymerization inhibitor GBT021601 for the treatemnt of patients with sickle cell disease [abstract]
.
Blood
.
2023
;
142
(
suppl 1
):
274
-
275
.
95.
Muller-Eberhard
U
,
Javid
J
,
Liem
HH
,
Hanstein
A
,
Hanna
M
.
Plasma concentrations of hemopexin, haptoglobin and heme in patients with various hemolytic diseases
.
Blood
.
1968
;
32
(
5
):
811
-
815
.
96.
Vinchi
F
,
Sparla
R
,
Passos
ST
, et al
.
Vasculo-toxic and pro-inflammatory action of unbound haemoglobin, haem and iron in transfusion-dependent patients with haemolytic anaemias
.
Br J Haematol
.
2021
;
193
(
3
):
637
-
658
.
97.
Cancado
RD
.
Pyruvate kinase deficiency: novel mutations and a better understanding of the genotype-to-phenotype correlation in Brazilian patients
.
Rev Bras Hematol Hemoter
.
2018
;
40
(
1
):
1
-
2
.
98.
Kittivorapart
J
,
Crew
VK
,
Wilson
MC
,
Heesom
KJ
,
Siritanaratkul
N
,
Toye
AM
.
Quantitative proteomics of plasma vesicles identify novel biomarkers for hemoglobin E/beta-thalassemic patients
.
Blood Adv
.
2018
;
2
(
2
):
95
-
104
.
99.
Schaer
DJ
,
Buehler
PW
,
Alayash
AI
,
Belcher
JD
,
Vercellotti
GM
.
Hemolysis and free hemoglobin revisited: exploring hemoglobin and hemin scavengers as a novel class of therapeutic proteins
.
Blood
.
2013
;
121
(
8
):
1276
-
1284
.
100.
Gbotosho
OT
,
Kapetanaki
MG
,
Kato
GJ
.
The worst things in life are free: the role of free heme in sickle cell disease
.
Front Immunol
.
2021
;
11
:
561917
.
101.
Scully
M
,
Knobl
P
,
Kentouche
K
, et al
.
Recombinant ADAMTS-13: first-in-human pharmacokinetics and safety in congenital thrombotic thrombocytopenic purpura
.
Blood
.
2017
;
130
(
19
):
2055
-
2063
.
102.
Schnog
JJ
,
Kremer Hovinga
JA
,
Krieg
S
, et al
.
ADAMTS13 activity in sickle cell disease
.
Am J Hematol
.
2006
;
81
(
7
):
492
-
498
.
103.
Gentinetta
T
,
Belcher
JD
,
Brugger-Verdon
V
, et al
.
Plasma-derived hemopexin as a candidate therapeutic agent for acute vaso-occlusion in sickle cell disease: preclinical evidence
.
J Clin Med
.
2022
;
11
(
3
):
630
.
104.
Belcher
JD
,
Chen
C
,
Nguyen
J
, et al
.
Heme triggers TLR4 signaling leading to endothelial cell activation and vaso-occlusion in murine sickle cell disease
.
Blood
.
2014
;
123
(
3
):
377
-
390
.
105.
Vinchi
F
,
Costa da Silva
M
,
Ingoglia
G
, et al
.
Hemopexin therapy reverts heme-induced proinflammatory phenotypic switching of macrophages in a mouse model of sickle cell disease
.
Blood
.
2016
;
127
(
4
):
473
-
486
.
106.
Vinchi
F
,
De Franceschi
L
,
Ghigo
A
, et al
.
Hemopexin therapy improves cardiovascular function by preventing heme-induced endothelial toxicity in mouse models of hemolytic diseases
.
Circulation
.
2013
;
127
(
12
):
1317
-
1329
.
107.
Biemond
BJ
,
Shore
BJ
,
Wilson
F
, et al
.
A phase 1 study of csl888 (hemopexin) in adult patients with sickle cell disease
.
Hemasphere
.
2023
;
7
(
S1
):
15
.
108.
Morris
CR
,
Brown
LAS
,
Reynolds
M
, et al
.
Impact of arginine therapy on mitochondrial function in children with sickle cell disease during vaso-occlusive pain
.
Blood
.
2020
;
136
(
12
):
1402
-
1406
.
109.
Morris
CR
,
Hamilton-Reeves
J
,
Martindale
RG
,
Sarav
M
,
Ochoa Gautier
JB
.
Acquired amino acid deficiencies: a focus on arginine and glutamine
.
Nutr Clin Pract
.
2017
;
32
(
suppl 1
):
30S
-
47S
.
110.
Merle
NS
,
Grunenwald
A
,
Rajaratnam
H
, et al
.
Intravascular hemolysis activates complement via cell-free heme and heme-loaded microvesicles
.
JCI Insight
.
2018
;
3
(
12
):
e96910
.
111.
Vercellotti
GM
,
Dalmasso
AP
,
Schaid
TR
, et al
.
Critical role of C5a in sickle cell disease
.
Am J Hematol
.
2019
;
94
(
3
):
327
-
337
.
112.
Ivy
ZK
,
Belcher
JD
,
Khasabova
IA
, et al
.
Cold exposure induces vaso-occlusion and pain in sickle mice that depend on complement activation
.
Blood
.
2023
;
142
(
22
):
1918
-
1927
.
113.
Lombardi
E
,
Matte
A
,
Risitano
AM
, et al
.
Factor H interferes with the adhesion of sickle red cells to vascular endothelium: a novel disease-modulating molecule
.
Haematologica
.
2019
;
104
(
5
):
919
-
928
.
114.
Roumenina
LT
,
Chadebech
P
,
Bodivit
G
, et al
.
Complement activation in sickle cell disease: dependence on cell density, hemolysis and modulation by hydroxyurea therapy
.
Am J Hematol
.
2020
;
95
(
5
):
456
-
464
.
115.
Rossato
P
,
Glantschnig
H
,
Canneva
F
, et al
.
Treatment with recombinant ADAMTS13, alleviates hypoxia/reoxygenation-induced pathologies in a mouse model of human sickle cell disease
.
J Thromb Haemost
.
2023
;
21
(
2
):
269
-
275
.
116.
Rossato
P
,
Federti
E
,
Matte
A
, et al
.
Evidence of protective effects of recombinant ADAMTS13 in a humanized model of sickle cell disease
.
Haematologica
.
2022
;
107
(
11
):
2650
-
2660
.
117.
Kanter
J
,
Parth
P
,
Desai
P
, et al
.
Safety and pharmacokinetics of recombinant ADAMTS13 in patients with sickle cell disease: a phase 1 randomized, double-blind, placebo-controlled study [abstract]
.
Blood
.
2023
;
142
(
suppl 1
):
149
-
151
.
118.
Sherratt
SCR
,
Libby
P
,
Bhatt
DL
,
Mason
RP
.
A biological rationale for the disparate effects of omega-3 fatty acids on cardiovascular disease outcomes
.
Prostaglandins Leukot Essent Fatty Acids
.
2022
;
182
:
102450
.
119.
Kotlyarov
S
,
Kotlyarova
A
.
Molecular pharmacology of inflammation resolution in atherosclerosis
.
Int J Mol Sci
.
2022
;
23
(
17
):
9770
.
120.
Matte
A
,
Recchiuti
A
,
Federti
E
, et al
.
Resolution of sickle cell disease-associated inflammation and tissue damage with 17R-resolvin D1
.
Blood
.
2019
;
133
(
3
):
252
-
265
.
121.
Kalish
BT
,
Matte
A
,
Andolfo
I
, et al
.
Dietary omega-3 fatty acids protect against vasculopathy in a transgenic mouse model of sickle cell disease
.
Haematologica
.
2015
;
100
(
7
):
870
-
880
.
122.
Daak
A
,
Rabinowicz
A
,
Ghebremeskel
K
.
Omega-3 fatty acids are a potential therapy for patients with sickle cell disease
.
Nat Rev Dis Primers
.
2018
;
4
(
1
):
15
.
123.
Wu
CYC
,
Lopez-Toledano
MA
,
Daak
AA
, et al
.
SC411 treatment can enhance survival in a mouse model of sickle cell disease
.
Prostaglandins Leukot Essent Fatty Acids
.
2020
;
158
:
102110
.
124.
Daak
AA
,
Dampier
CD
,
Fuh
B
, et al
.
Double-blind, randomized, multicenter phase 2 study of SC411 in children with sickle cell disease (SCOT trial)
.
Blood Adv
.
2018
;
2
(
15
):
1969
-
1979
.
125.
Climax
J
,
Newsome
PN
,
Hamza
M
, et al
.
Effects of Epeleuton, a novel synthetic second-generation n-3 fatty acid, on non-alcoholic fatty liver disease, triglycerides, glycemic control, and cardiometabolic and inflammatory markers
.
J Am Heart Assoc
.
2020
;
9
(
16
):
e016334
.
126.
Abboud
MR
,
Cancoda
RD
,
De Montalembert
M
, et al
.
Efficacy, safety, and biomarker analysis of 5 Mg and 7.5 Mg doses of crizanlizumab in patients with sickle cell disease: primary analyses from the phase III STAND study [abstract]
.
Blood
.
2023
;
142
(
suppl 1
):
272
-
274
.
127.
Idowu
M
,
Debaun
MR
,
Burnett
A
, et al
.
Primary analysis of spartan: a phase 2 trial to assess the efficacy and safety of crizanlizumab in patients with sickle cell disease related priapism [abstract]
.
Blood
.
2023
;
142
(
suppl 1
):
146
-
149
.
128.
Andemariam
B
,
Inati
A
,
Colombatti
R
, et al
.
Trials in progress: the THRIVE studies evaluating the efficacy, safety, abd long-term treatment with inclacumab, a P-selectin inhibitor, in patients with sickle cell disease
.
Hemasphere
.
2023
;
7
(
suppl
):
23
-
24
.
129.
Federici
C
,
Spehn
M
,
Kovshovik
P
, et al
.
Inclacumab reduce preexisting red blood cell adhesion to activated endothelial cells: in vitro assessment of the microfluidic platform endothelium on chip [abstract]
.
Blood
.
2023
;
142
(
suppl 1
):
5267
-
5269
.
130.
Rees
DC
,
Kilinc
Y
,
Unal
S
, et al
.
A randomized, placebo-controlled, double-blind trial of canakinumab in children and young adults with sickle cell anemia
.
Blood
.
2022
;
139
(
17
):
2642
-
2652
.
131.
Pierzynowska
K
,
Kaminska
T
,
Wegrzyn
G
.
One drug to treat many diseases: unlocking the economic trap of rare diseases
.
Metab Brain Dis
.
2020
;
35
(
8
):
1237
-
1240
.
You do not currently have access to this content.
Sign in via your Institution