• We developed a neural network–based probabilistic classifier, DLBclass, that assigns each DLBCL to its respective C1-C5 genetic subtype.

  • DLBclass is an inclusive taxonomy that provides actionable genetic information in almost all patients with DLBCL.

Abstract

Diffuse large B-cell lymphoma (DLBCL) is a clinically and molecularly heterogeneous disease. The increasing recognition and targeting of genetically defined DLBCLs highlight the need for robust classification algorithms. We previously characterized recurrent genetic alterations in DLBCL and identified 5 discrete subtypes, clusters 1 to 5 (C1-C5), with unique mechanisms of transformation, immune evasion, candidate treatment targets, and different outcomes after standard first-line therapy. Herein, we validate the C1 to C5 DLBCL taxonomy in an independent data set and use the expanded series of 699 primary DLBCLs to develop a probabilistic molecular classifier and confirm its performance in an independent test set. Using our previously assigned cluster labels as a reference, we systematically compared multiple machine learning models and strategies for input feature dimensionality reduction with a newly developed performance metric that captured the relationship between accuracy and confidence of class assignments. The winning neural network model, DLBclass, assigned all cases in the training/validation and independent test sets with 91% and 89% accuracies, respectively. In the 75% of cases with confidence >0.7, DLBclass assignments were accurate in 97% of the training/validation set and 98% of the test set. DLBclass enables robust prospective classification of single cases for inclusion in genetically guided clinical trials or practice and represents a framework for the development of genomics-based classification methods in other cancers.

1.
Sehn
LH
,
Salles
G
.
Diffuse large B-cell lymphoma
.
N Engl J Med
.
2021
;
384
(
9
):
842
-
858
.
2.
Alizadeh
AA
,
Eisen
MB
,
Davis
RE
, et al
.
Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling
.
Nature
.
2000
;
403
(
6769
):
503
-
511
.
3.
Rosenwald
A
,
Wright
G
,
Chan
WC
, et al
.
The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma
.
N Engl J Med
.
2002
;
346
(
25
):
1937
-
1947
.
4.
Ennishi
D
,
Jiang
A
,
Boyle
M
, et al
.
Double-hit gene expression signature defines a distinct subgroup of germinal center B-cell-like diffuse large B-cell lymphoma
.
J Clin Oncol
.
2019
;
37
(
3
):
190
-
201
.
5.
Sha
C
,
Barrans
S
,
Cucco
F
, et al
.
Molecular high-grade B-cell lymphoma: defining a poor-risk group that requires different approaches to therapy
.
J Clin Oncol
.
2019
;
37
(
3
):
202
-
212
.
6.
Hilton
LK
,
Tang
J
,
Ben-Neriah
S
, et al
.
The double-hit signature identifies double-hit diffuse large B-cell lymphoma with genetic events cryptic to FISH
.
Blood
.
2019
;
134
(
18
):
1528
-
1532
.
7.
Alduaij
W
,
Collinge
B
,
Ben-Neriah
S
, et al
.
Molecular determinants of clinical outcomes in a real-world diffuse large B-cell lymphoma population
.
Blood
.
2023
;
141
(
20
):
2493
-
2507
.
8.
Monti
S
,
Savage
KJ
,
Kutok
JL
, et al
.
Molecular profiling of diffuse large B-cell lymphoma identifies robust subtypes including one characterized by host inflammatory response
.
Blood
.
2005
;
105
(
5
):
1851
-
1861
.
9.
Caro
P
,
Kishan
AU
,
Norberg
E
, et al
.
Metabolic signatures uncover distinct targets in molecular subsets of diffuse large B cell lymphoma
.
Cancer Cell
.
2012
;
22
(
4
):
547
-
560
.
10.
Chen
L
,
Monti
S
,
Juszczynski
P
, et al
.
SYK inhibition modulates distinct PI3K/AKT- dependent survival pathways and cholesterol biosynthesis in diffuse large B cell lymphomas
.
Cancer Cell
.
2013
;
23
(
6
):
826
-
838
.
11.
Lenz
G
,
Wright
G
,
Dave
SS
, et al
.
Stromal gene signatures in large-B-cell lymphomas
.
N Engl J Med
.
2008
;
359
(
22
):
2313
-
2323
.
12.
Steen
CB
,
Luca
BA
,
Esfahani
MS
, et al
.
The landscape of tumor cell states and ecosystems in diffuse large B cell lymphoma
.
Cancer Cell
.
2021
;
39
(
10
):
1422
-
1437.e10
.
13.
Davis
RE
,
Ngo
VN
,
Lenz
G
, et al
.
Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma
.
Nature
.
2010
;
463
(
7277
):
88
-
92
.
14.
Ngo
VN
,
Young
RM
,
Schmitz
R
, et al
.
Oncogenically active MYD88 mutations in human lymphoma
.
Nature
.
2011
;
470
(
7332
):
115
-
119
.
15.
Chapuy
B
,
Stewart
C
,
Dunford
AJ
, et al
.
Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes
.
Nat Med
.
2018
;
24
(
5
):
679
-
690
.
16.
Chapuy
B
,
Roemer
MGM
,
Stewart
C
, et al
.
Targetable genetic features of primary testicular and primary central nervous system lymphomas
.
Blood
.
2016
;
127
(
7
):
869
-
881
.
17.
Schmitz
R
,
Wright
GW
,
Huang
DW
, et al
.
Genetics and pathogenesis of diffuse large B-cell lymphoma
.
N Engl J Med
.
2018
;
378
(
15
):
1396
-
1407
.
18.
Wright
GW
,
Huang
DW
,
Phelan
JD
, et al
.
A probabilistic classification tool for genetic subtypes of diffuse large B cell lymphoma with therapeutic implications
.
Cancer Cell
.
2020
;
37
(
4
):
551
-
568.e14
.
19.
Lacy
SE
,
Barrans
SL
,
Beer
PA
, et al
.
Targeted sequencing in DLBCL, molecular subtypes, and outcomes: a Haematological Malignancy Research Network report
.
Blood
.
2020
;
135
(
20
):
1759
-
1771
.
20.
Younes
A
,
Sehn
LH
,
Johnson
P
, et al
.
Randomized phase III trial of ibrutinib and rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone in non-germinal center B-cell diffuse large B-cell lymphoma
.
J Clin Oncol
.
2019
;
37
(
15
):
1285
-
1295
.
21.
Wilson
WH
,
Wright
GW
,
Huang
DW
, et al
.
Effect of ibrutinib with R-CHOP chemotherapy in genetic subtypes of DLBCL
.
Cancer Cell
.
2021
;
39
(
12
):
1643
-
1653.e3
.
22.
Mondello
P
,
Ansell
SM
.
PHOENIX rises: genomic-based therapies for diffuse large B cell lymphoma
.
Cancer Cell
.
2021
;
39
(
12
):
1570
-
1572
.
23.
Zhang
MC
,
Tian
S
,
Fu
D
, et al
.
Genetic subtype-guided immunochemotherapy in diffuse large B cell lymphoma: the randomized GUIDANCE-01 trial
.
Cancer Cell
.
2023
;
41
(
10
):
1705
-
1716.e5
.
24.
Runge
HFP
,
Lacy
S
,
Barrans
S
, et al
.
Application of the LymphGen classification tool to 928 clinically and genetically-characterised cases of diffuse large B cell lymphoma (DLBCL)
.
Br J Haematol
.
2021
;
192
(
1
):
216
-
220
.
25.
Morschhauser
F
,
Leung
W
,
Raghavan
V
, et al
.
Deciphering the clinical benefit of Pola-R-CHP versus R-CHOP in different genetic subtypes beyond cell of origin in the POLARIX study [abstract]
.
Blood
.
2023
;
142
(
suppl 1
):
3000
.
26.
Morin
RD
,
Arthur
SE
,
Hodson
DJ
.
Molecular profiling in diffuse large B-cell lymphoma: why so many types of subtypes?
.
Br J Haematol
.
2022
;
196
(
4
):
814
-
829
.
27.
Pedregosa
F
,
Varoquaux
G
,
Gramfort
A
, et al
.
Scikit-learn: machine learning in python
.
J Mach Learn Res
.
2011
;
12
(
85
):
2825
-
2830
.
28.
Alaggio
R
,
Amador
C
,
Anagnostopoulos
I
, et al
.
The 5th edition of the World Health Organization classification of haematolymphoid tumours: lymphoid neoplasms
.
Leukemia
.
2022
;
36
(
7
):
1720
-
1748
.
29.
Hartmann
S
,
Schuhmacher
B
,
Rausch
T
, et al
.
Highly recurrent mutations of SGK1, DUSP2 and JUNB in nodular lymphocyte predominant Hodgkin lymphoma
.
Leukemia
.
2016
;
30
(
4
):
844
-
853
.
30.
Schuhmacher
B
,
Bein
J
,
Rausch
T
, et al
.
JUNB, DUSP2, SGK1, SOCS1 and CREBBP are frequently mutated in T-cell/histiocyte-rich large B-cell lymphoma
.
Haematologica
.
2019
;
104
(
2
):
330
-
337
.
31.
Gao
J
,
Sidiropoulou
E
,
Walker
I
, et al
.
SGK1 mutations in DLBCL generate hyperstable protein neoisoforms that promote AKT independence
.
Blood
.
2021
;
138
(
11
):
959
-
964
.
32.
Yusufova
N
,
Kloetgen
A
,
Teater
M
, et al
.
Histone H1 loss drives lymphoma by disrupting 3D chromatin architecture
.
Nature
.
2021
;
589
(
7841
):
299
-
305
.
33.
Quivoron
C
,
Couronné
L
,
Della Valle
V
, et al
.
TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis
.
Cancer Cell
.
2011
;
20
(
1
):
25
-
38
.
34.
Dominguez
PM
,
Ghamlouch
H
,
Rosikiewicz
W
, et al
.
TET2 deficiency causes germinal center hyperplasia, impairs plasma cell differentiation, and promotes B-cell lymphomagenesis
.
Cancer Discov
.
2018
;
8
(
12
):
1632
-
1653
.
35.
Venturutti
L
,
Teater
M
,
Zhai
A
, et al
.
TBL1XR1 mutations drive extranodal lymphoma by inducing a pro-tumorigenic memory fate
.
Cell
.
2020
;
182
(
2
):
297
-
316.e27
.
36.
Mandato
E
,
Yan
Q
,
Ouyang
J
, et al
.
MYD88L265P augments proximal B-cell receptor signaling in large B-cell lymphomas via an interaction with DOCK8
.
Blood
.
2023
;
142
(
14
):
1219
-
1232
.
37.
Flumann
R
,
Hansen
J
,
Pelzer
BW
, et al
.
Distinct genetically determined origins of Myd88/BCL2-driven aggressive lymphoma rationalize targeted therapeutic intervention strategies
.
Blood Cancer Discov
.
2023
;
4
(
1
):
78
-
97
.
38.
Ennishi
D
,
Takata
K
,
Béguelin
W
, et al
.
Molecular and genetic characterization of MHC deficiency identifies EZH2 as therapeutic target for enhancing immune recognition
.
Cancer Discov
.
2019
;
9
(
4
):
546
-
563
.
39.
Dersh
D
,
Phelan
JD
,
Gumina
ME
, et al
.
Genome-wide screens identify lineage- and tumor-specific genes modulating MHC-I- and MHC-II-restricted immunosurveillance of human lymphomas
.
Immunity
.
2021
;
54
(
1
):
116
-
131.e10
.
40.
Ptashkin
RN
,
Ewalt
MD
,
Jayakumaran
G
, et al
.
Enhanced clinical assessment of hematologic malignancies through routine paired tumor and normal sequencing
.
Nat Commun
.
2023
;
14
(
1
):
6895
.
41.
Zehir
A
,
Benayed
R
,
Shah
RH
, et al
.
Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients
.
Nat Med
.
2017
;
23
(
6
):
703
-
713
.
42.
Gurumurthi
A
,
Westin
J
,
Subklewe
M
.
The race is on: bispecifics vs CAR T cells in B-cell lymphoma
.
Blood Adv
.
2023
;
7
(
19
):
5713
-
5716
.
43.
Major
A
,
Kamdar
M
.
Selection of bispecific antibody therapies or CAR-T cell therapy in relapsed lymphomas
.
Hematology
.
2023
;
2023
(
1
):
370
-
381
.
44.
Wright
KT
,
Weirather
JL
,
Jiang
S
, et al
.
Diffuse large B-cell lymphomas have spatially defined, tumor immune microenvironments revealed by high-parameter imaging
.
Blood Adv
.
2023
;
7
(
16
):
4633
-
4646
.
45.
Kotlov
N
,
Bagaev
A
,
Revuelta
MV
, et al
.
Clinical and biological subtypes of B-cell lymphoma revealed by microenvironmental signatures
.
Cancer Discov
.
2021
;
11
(
6
):
1468
-
1489
.
You do not currently have access to this content.
Sign in via your Institution