• Babesia infection of SCD RBCs results in loss of RBC deformability, hypervesiculation, and loss of surface area exacerbating the SCD phenotype.

  • Sickle trait RBCs are not phenotypically silent but show rheology intermediate to uninfected as well as infected wild-type and sickle RBCs.

Abstract

Babesiosis in sickle cell disease (SCD) is marked by severe anemia but the underlying red blood cell (RBC) rheologic parameters remain largely undefined. Here, we describe altered RBC deformability from both primary (host RBC sickle hemoglobin mediated) and secondary changes (Babesia parasite infection mediated) to the RBC membrane using wild-type AA, sickle trait AS, and sickle SS RBCs. Our ektacytometry analysis demonstrates that the changes in the host RBC biomechanical properties, before and after Babesia infection, reside on a spectrum of severity, with wild-type infected AA cells, despite showing a significant reduction of deformability under both shear and osmolarity gradients, exhibiting only a mild phenotype, compared with infected AS RBCs that show median changes in deformability and infected SS RBCs that exhibit the most dramatic impact of infection on cellular rheology, including an increase in point of sickling values. Furthermore, using ImageStream cytometric technology to quantify changes in cellular shape and area along with a tunable resistive pulse sensor to measure release of extracellular vesicles from these host RBCs, before and after infection, we offer a potential mechanistic basis for this extreme SS RBC rheologic profile, which include enhanced sickling rates and altered osmotic fragility, loss of RBC surface area, and hypervesiculation in infected SS host RBCs. These results underline the importance of understanding the impact of intraerythrocytic parasitic infections of SCD RBCs, especially on their cellular membranes and studying the mechanisms that lead to hyperhemolysis and extreme anemia in patients with SCD.

1.
Sundd
P
,
Gladwin
MT
,
Novelli
EM
.
Pathophysiology of sickle cell disease
.
Annu Rev Pathol
.
2019
;
14
:
263
-
292
.
2.
Beri
D
,
Singh
M
,
Rodriguez
M
, et al
.
Elucidating parasite and host-cell factors enabling Babesia infection in sickle red cells under hypoxic/hyperoxic conditions
.
Blood Adv
.
2023
;
7
(
4
):
649
-
663
.
3.
Ord
RL
,
Lobo
CA
.
Human babesiosis: pathogens, prevalence, diagnosis and treatment
.
Curr Clin Microbiol Rep
.
2015
;
2
(
4
):
173
-
181
.
4.
Beri
D
,
Singh
M
,
Rodriguez
M
,
Yazdanbakhsh
K
,
Lobo
CA
.
Sickle cell anemia and Babesia infection
.
Pathogens
.
2021
;
10
(
11
):
1435
.
5.
Homer
MJ
,
Aguilar-Delfin
I
,
Telford
SR
,
Krause
PJ
,
Persing
DH
.
Babesiosis
.
Clin Microbiol Rev
.
2000
;
13
(
3
):
451
-
469
.
6.
Zintl
A
,
Mulcahy
G
,
Skerrett
HE
,
Taylor
SM
,
Gray
JS
.
Babesia divergens, a bovine blood parasite of veterinary and zoonotic importance
.
Clin Microbiol Rev
.
2003
;
16
(
4
):
622
-
636
.
7.
Spichler-Moffarah
A
,
Ong
E
,
O'Bryan
J
,
Krause
PJ
.
Cardiac complications of human Babesiosis
.
Clin Infect Dis
.
2023
;
76
(
3
):
e1385
-
e1391
.
8.
Gohil
S
,
Kats
LM
,
Sturm
A
,
Cooke
BM
.
Recent insights into alteration of red blood cells by Babesia bovis: moovin' forward
.
Trends Parasitol
.
2010
;
26
(
12
):
591
-
599
.
9.
Suarez
CE
,
Alzan
HF
,
Silva
MG
,
Rathinasamy
V
,
Poole
WA
,
Cooke
BM
.
Unravelling the cellular and molecular pathogenesis of bovine babesiosis: is the sky the limit?
.
Int J Parasitol
.
2019
;
49
(
2
):
183
-
197
.
10.
Hakimi
H
,
Yamagishi
J
,
Kawazu
SI
,
Asada
M
.
Advances in understanding red blood cell modifications by Babesia
.
PLoS Pathog
.
2022
;
18
(
9
):
e1010770
.
11.
Hutchings
CL
,
Li
A
,
Fernandez
KM
, et al
.
New insights into the altered adhesive and mechanical properties of red blood cells parasitized by Babesia bovis
.
Mol Microbiol
.
2007
;
65
(
4
):
1092
-
1105
.
12.
Lu
M
,
Rab
MA
,
Shevkoplyas
SS
,
Sheehan
VA
.
Blood rheology biomarkers in sickle cell disease
.
Exp Biol Med (Maywood)
.
2020
;
245
(
2
):
155
-
165
.
13.
Chien
S
.
Red cell deformability and its relevance to blood flow
.
Annu Rev Physiol
.
1987
;
49
:
177
-
192
.
14.
Connes
P
,
Alexy
T
,
Detterich
J
,
Romana
M
,
Hardy-Dessources
MD
,
Ballas
SK
.
The role of blood rheology in sickle cell disease
.
Blood Rev
.
2016
;
30
(
2
):
111
-
118
.
15.
Bloch
EM
,
Busch
MP
,
Corash
LM
, et al
.
Leveraging donor populations to study the epidemiology and pathogenesis of transfusion-transmitted and emerging infectious diseases
.
Transfus Med Rev
.
2023
;
37
(
4
):
150769
.
16.
Drews
SJ
,
Kjemtrup
AM
,
Krause
PJ
, et al
.
Transfusion-transmitted Babesia spp.: a changing landscape of epidemiology, regulation, and risk mitigation
.
J Clin Microbiol
.
2023
;
61
(
10
):
e0126822
.
17.
Lobo
CA
,
Cursino-Santos
JR
,
Alhassan
A
,
Rodrigues
M
.
Babesia: an emerging infectious threat in transfusion medicine
.
PLoS Pathog
.
2013
;
9
(
7
):
e1003387
.
18.
Lobo
CA
,
Singh
M
,
Rodriguez
M
.
Human babesiosis: recent advances and future challenges
.
Curr Opin Hematol
.
2020
;
27
(
6
):
399
-
405
.
19.
Costa
V
,
Mercure-Corriveau
N
,
Gourneau
J
, et al
.
Transfusion-transmitted babesiosis in a patient with sickle cell disease undergoing chronic red cell exchange
.
Transfusion
.
2023
;
63
(
3
):
652
-
655
.
20.
Karkoska
K
,
Louie
J
,
Appiah-Kubi
AO
, et al
.
Transfusion-transmitted babesiosis leading to severe hemolysis in two patients with sickle cell anemia
.
Pediatr Blood Cancer
.
2018
;
65
(
1
):
26734
.
21.
Cursino-Santos
JR
,
Singh
M
,
Pham
P
,
Rodriguez
M
,
Lobo
CA
.
Babesia divergens builds a complex population structure composed of specific ratios of infected cells to ensure a prompt response to changing environmental conditions
.
Cell Microbiol
.
2016
;
18
(
6
):
859
-
874
.
22.
Sorette
MP
,
Lavenant
MG
,
Clark
MR
.
Ektacytometric measurement of sickle cell deformability as a continuous function of oxygen tension
.
Blood
.
1987
;
69
(
1
):
316
-
323
.
23.
van Beers
EJ
,
Samsel
L
,
Mendelsohn
L
, et al
.
Imaging flow cytometry for automated detection of hypoxia-induced erythrocyte shape change in sickle cell disease
.
Am J Hematol
.
2014
;
89
(
6
):
598
-
603
.
24.
Safeukui
I
,
Buffet
PA
,
Perrot
S
, et al
.
Surface area loss and increased sphericity account for the splenic entrapment of subpopulations of Plasmodium falciparum ring-infected erythrocytes
.
PLoS One
.
2013
;
8
(
3
):
e60150
.
25.
Beri
D
,
Rodriguez
M
,
Singh
M
, et al
.
Identification and characterization of extracellular vesicles from red cells infected with Babesia divergens and Babesia microti
.
Front Cell Infect Microbiol
.
2022
;
12
:
962944
.
26.
Orbach
A
,
Zelig
O
,
Yedgar
S
,
Barshtein
G
.
Biophysical and biochemical markers of red blood cell fragility
.
Transfus Med Hemother
.
2017
;
44
(
3
):
183
-
187
.
27.
Bhat
V
,
Sheehan
VA
.
Can we use biomarkers to identify those at risk of acute pain from sickle cell disease?
.
Expert Rev Hematol
.
2024
;
17
(
8
):
411
-
418
.
28.
Rab
MAE
,
Kanne
CK
,
Boisson
C
, et al
.
Oxygen gradient ektacytometry-derived biomarkers are associated with acute complications in sickle cell disease
.
Blood Adv
.
2024
;
8
(
2
):
276
-
286
.
29.
Saah
E
,
Fadaei
P
,
Gurkan
UA
,
Sheehan
V
.
Sickle cell disease pathophysiology and related molecular and biophysical biomarkers
.
Hematol Oncol Clin North Am
.
2022
;
36
(
6
):
1077
-
1095
.
30.
Cranston
HA
,
Boylan
CW
,
Carroll
GL
, et al
.
Plasmodium falciparum maturation abolishes physiologic red cell deformability
.
Science
.
1984
;
223
(
4634
):
400
-
403
.
31.
Barber
BE
,
Russell
B
,
Grigg
MJ
, et al
.
Reduced red blood cell deformability in Plasmodium knowlesi malaria
.
Blood Adv
.
2018
;
2
(
4
):
433
-
443
.
32.
Dondorp
AM
,
Angus
BJ
,
Chotivanich
K
, et al
.
Red blood cell deformability as a predictor of anemia in severe falciparum malaria
.
Am J Trop Med Hyg
.
1999
;
60
(
5
):
733
-
737
.
33.
Dondorp
AM
,
Nyanoti
M
,
Kager
PA
,
Mithwani
S
,
Vreeken
J
,
Marsh
K
.
The role of reduced red cell deformability in the pathogenesis of severe falciparum malaria and its restoration by blood transfusion
.
Trans R Soc Trop Med Hyg
.
2002
;
96
(
3
):
282
-
286
.
34.
Ishioka
H
,
Ghose
A
,
Charunwatthana
P
, et al
.
Sequestration and red cell deformability as determinants of hyperlactatemia in falciparum malaria
.
J Infect Dis
.
2016
;
213
(
5
):
788
-
793
.
35.
Rathnam
JTT
,
Grigg
MJ
,
Dondorp
AM
, et al
.
Reduced red blood cell deformability in vivax malaria
.
J Infect Dis
.
2025
;
231
(
3
):
e566
-
e569
.
36.
Naumann
KM
,
Jones
GL
,
Saul
A
,
Smith
R
.
A Plasmodium falciparum exo-antigen alters erythrocyte membrane deformability
.
FEBS Lett
.
1991
;
292
(
1-2
):
95
-
97
.
37.
Rey
J
,
Buffet
PA
,
Ciceron
L
,
Milon
G
,
Mercereau-Puijalon
O
,
Safeukui
I
.
Reduced erythrocyte deformability associated with hypoargininemia during Plasmodium falciparum malaria
.
Sci Rep
.
2014
;
4
:
3767
.
38.
Skorokhod
A
,
Schwarzer
E
,
Gremo
G
,
Arese
P
.
HNE produced by the malaria parasite Plasmodium falciparum generates HNE-protein adducts and decreases erythrocyte deformability
.
Redox Rep
.
2007
;
12
(
1
):
73
-
75
.
39.
Presley
TD
,
Perlegas
AS
,
Bain
LE
, et al
.
Effects of a single sickling event on the mechanical fragility of sickle cell trait erythrocytes
.
Hemoglobin
.
2010
;
34
(
1
):
24
-
36
.
40.
Frenette
PS
,
Atweh
GF
.
Sickle cell disease: old discoveries, new concepts, and future promise
.
J Clin Invest
.
2007
;
117
(
4
):
850
-
858
.
41.
Chasis
JA
,
Mohandas
N
.
Erythrocyte membrane deformability and stability: two distinct membrane properties that are independently regulated by skeletal protein associations
.
J Cell Biol
.
1986
;
103
(
2
):
343
-
350
.
42.
Evans
EA
.
Structure and deformation properties of red blood cells: concepts and quantitative methods
.
Methods Enzymol
.
1989
;
173
:
3
-
35
.
43.
Lavazec
C
.
Molecular mechanisms of deformability of Plasmodium-infected erythrocytes
.
Curr Opin Microbiol
.
2017
;
40
:
138
-
144
.
44.
Mohandas
N
,
Clark
MR
,
Jacobs
MS
,
Shohet
SB
.
Analysis of factors regulating erythrocyte deformability
.
J Clin Invest
.
1980
;
66
(
3
):
563
-
573
.
45.
Mohandas
N
,
Gallagher
PG
.
Red cell membrane: past, present, and future
.
Blood
.
2008
;
112
(
10
):
3939
-
3948
.
46.
Beri
D
,
Singh
M
,
Rodriguez
M
, et al
.
Global metabolomic profiling of host red blood cells infected with Babesia divergens reveals novel antiparasitic target pathways
.
Microbiol Spectr
.
2023
;
11
(
2
):
e0468822
.
47.
Barshtein
G
,
Gural
A
,
Arbell
D
, et al
.
Red blood cell deformability is expressed by a set of interrelated membrane proteins
.
Int J Mol Sci
.
2023
;
24
(
16
):
12755
.
48.
Fibach
E.
.
The redox balance and membrane shedding in RBC production, maturation, and senescence
.
Front Physiol
.
2021
;
12
:
604738
.
49.
Leal
JKF
,
Adjobo-Hermans
MJW
,
Bosman
G
.
Red blood cell homeostasis: mechanisms and effects of microvesicle generation in health and disease
.
Front Physiol
.
2018
;
9
:
703
.
You do not currently have access to this content.
Sign in via your Institution