• Regulatory regions undergoing de novo chromatin activation in CLL are associated with both progressive and indolent disease.

  • A balance score between proprogression and proindolence chromatin signatures is a powerful independent prognostic factor in CLL.

Abstract

Previous studies have reported that chronic lymphocytic leukemia (CLL) shows a de novo chromatin activation pattern compared with normal B cells. Here, we explored whether the level of chromatin activation is related to the clinical behavior of CLL. We identified that, in some regulatory regions, increased de novo chromatin activation is linked to clinical progression, whereas, in other regions, it is associated with an indolent course. We next developed 2 prognostic scores for progressive and indolent disease, respectively, calculated a single score representing the balance between them, and further generated surrogate scores based on gene and protein expression of the target genes. The balance score outperformed the clinical impact of the 2 individual scores, because it seemed to capture the prognostic information provided by each of them. Biologically, CLLs with higher balance score showed increased activation of tumor necrosis factor alpha (TNF-α)/NF-κB and mTOR signaling pathways. Regulatory programs related to progression were predominantly activated in the lymph node microenvironment, whereas those linked to indolent disease appeared to be microenvironment independent. Finally, we thoroughly validated the balance score as a powerful and independent quantitative prognostic factor for time to first treatment across independent CLL cohorts and data modalities, such as chromatin, transcriptome, or proteome data. Our findings support the concept that de novo acquisition of chromatin changes in CLL cells plays a dual biological role, and the balance between proprogression and proindolence is a strong independent determinant of CLL prognosis.

1.
Nadeu
F
,
Diaz-Navarro
A
,
Delgado
J
,
Puente
XS
,
Campo
E
.
Genomic and epigenomic alterations in chronic lymphocytic leukemia
.
Annu Rev Pathol
.
2020
;
15
:
149
-
177
.
2.
Fabbri
G
,
Dalla-Favera
R
.
The molecular pathogenesis of chronic lymphocytic leukaemia
.
Nat Rev Cancer
.
2016
;
16
(
3
):
145
-
162
.
3.
Kipps
TJ
,
Stevenson
FK
,
Wu
CJ
, et al
.
Chronic lymphocytic leukaemia
.
Nat Rev Dis Primers
.
2017
;
3
:
16096
.
4.
Damle
RN
,
Wasil
T
,
Fais
F
, et al
.
Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia
.
Blood
.
1999
;
94
(
6
):
1840
-
1847
.
5.
Hamblin
TJ
,
Davis
Z
,
Gardiner
A
,
Oscier
DG
,
Stevenson
FK
.
Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia
.
Blood
.
1999
;
94
(
6
):
1848
-
1854
.
6.
Puente
XS
,
Beà
S
,
Valdés-Mas
R
, et al
.
Non-coding recurrent mutations in chronic lymphocytic leukaemia
.
Nature
.
2015
;
526
(
7574
):
519
-
524
.
7.
Landau
DA
,
Tausch
E
,
Taylor-Weiner
AN
, et al
.
Mutations driving CLL and their evolution in progression and relapse
.
Nature
.
2015
;
526
(
7574
):
525
-
530
.
8.
Knisbacher
BA
,
Lin
Z
,
Hahn
CK
, et al
.
Molecular map of chronic lymphocytic leukemia and its impact on outcome
.
Nat Genet
.
2022
;
54
(
11
):
1664
-
1674
.
9.
Ferreira
PG
,
Jares
P
,
Rico
D
, et al
.
Transcriptome characterization by RNA sequencing identifies a major molecular and clinical subdivision in chronic lymphocytic leukemia
.
Genome Res
.
2014
;
24
(
2
):
212
-
226
.
10.
Lu
J
,
Cannizzaro
E
,
Meier-Abt
F
, et al
.
Multi-omics reveals clinically relevant proliferative drive associated with mTOR-MYC-OXPHOS activity in chronic lymphocytic leukemia
.
Nat Can (Ott)
.
2021
;
2
(
8
):
853
-
864
.
11.
Baylin
SB
,
Jones
PA
.
A decade of exploring the cancer epigenome-biological and translational implications
.
Nat Rev Cancer
.
2011
;
11
(
10
):
726
-
734
.
12.
Kulis
M
,
Heath
S
,
Bibikova
M
, et al
.
Epigenomic analysis detects widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia
.
Nat Genet
.
2012
;
44
(
11
):
1236
-
1242
.
13.
Oakes
CC
,
Seifert
M
,
Assenov
Y
, et al
.
DNA methylation dynamics during B cell maturation underlie a continuum of disease phenotypes in chronic lymphocytic leukemia
.
Nat Genet
.
2016
;
48
(
3
):
253
-
264
.
14.
Duran-Ferrer
M
,
Clot
G
,
Nadeu
F
, et al
.
The proliferative history shapes the DNA methylome of B-cell tumors and predicts clinical outcome
.
Nat Can (Ott)
.
2020
;
1
(
11
):
1066
-
1081
.
15.
Mansouri
L
,
Wierzbinska
JA
,
Plass
C
,
Rosenquist
R
.
Epigenetic deregulation in chronic lymphocytic leukemia: clinical and biological impact
.
Semin Cancer Biol
.
2018
;
51
:
1
-
11
.
16.
Gabbutt
C
,
Duran-Ferrer
M
,
Grant
H
, et al
.
Evolutionary dynamics of 1,976 lymphoid malignancies predict clinical outcome. medRxiv. Preprint posted online 10 November 2023
. https://doi.org/10.1101/2023.11.10.23298336.
17.
Kulis
M
,
Martin-Subero
JI
.
Integrative epigenomics in chronic lymphocytic leukaemia: biological insights and clinical applications
.
Br J Haematol
.
2023
;
200
(
3
):
280
-
290
.
18.
Beekman
R
,
Chapaprieta
V
,
Russiñol
N
, et al
.
The reference epigenome and regulatory chromatin landscape of chronic lymphocytic leukemia
.
Nat Med
.
2018
;
24
(
6
):
868
-
880
.
19.
Ott
CJ
,
Federation
AJ
,
Schwartz
LS
, et al
.
Enhancer architecture and essential core regulatory circuitry of chronic lymphocytic leukemia
.
Cancer Cell
.
2018
;
34
(
6
):
982
-
995.e7
.
20.
Mallm
J
,
Iskar
M
,
Ishaque
N
, et al
.
Linking aberrant chromatin features in chronic lymphocytic leukemia to transcription factor networks
.
Mol Syst Biol
.
2019
;
15
(
5
):
e8339
.
21.
Pastore
A
,
Gaiti
F
,
Lu
SX
, et al
.
Corrupted coordination of epigenetic modifications leads to diverging chromatin states and transcriptional heterogeneity in CLL
.
Nat Commun
.
2019
;
10
(
1
):
1874
.
22.
Nadeu
F
,
Royo
R
,
Massoni-Badosa
R
, et al
.
Detection of early seeding of Richter transformation in chronic lymphocytic leukemia
.
Nat Med
.
2022
;
28
(
8
):
1662
-
1671
.
23.
Massoni-Badosa
R
,
Iacono
G
,
Moutinho
C
, et al
.
Sampling time-dependent artifacts in single-cell genomics studies
.
Genome Biol
.
2020
;
21
(
1
):
112
.
24.
Nadeu
F
,
Royo
R
,
Clot
G
, et al
.
IGLV3-21 R110 identifies an aggressive biological subtype of chronic lymphocytic leukemia with intermediate epigenetics
.
Blood
.
2021
;
137
(
21
):
2935
-
2946
.
25.
Herbst
SA
,
Vesterlund
M
,
Helmboldt
AJ
, et al
.
Proteogenomics refines the molecular classification of chronic lymphocytic leukemia
.
Nat Commun
.
2022
;
13
(
1
):
6226
.
26.
Sun
C
,
Chen
YC
,
Martinez Zurita
A
, et al
.
The immune microenvironment shapes transcriptional and genetic heterogeneity in chronic lymphocytic leukemia
.
Blood Adv
.
2023
;
7
(
1
):
145
-
158
.
27.
Bartholdy
BA
,
Wang
X
,
Yan
XJ
, et al
.
CLL intraclonal fractions exhibit established and recently acquired patterns of DNA methylation
.
Blood Adv
.
2020
;
4
(
5
):
893
-
905
.
28.
Kwok
M
,
Oldreive
C
,
Rawstron
AC
, et al
.
Integrative analysis of spontaneous CLL regression highlights genetic and microenvironmental interdependency in CLL
.
Blood
.
2020
;
135
(
6
):
411
-
428
.
29.
Toth
G.
. Exponential and logarithmic functions.
Elements of Mathematics: A Problem-Centered Approach to History and Foundations
. 1st ed..
Springer
;
2021
:
423
-
468
.
30.
Witten
DM
,
Tibshirani
R
.
Survival analysis with high-dimensional covariates
.
Stat Methods Med Res
.
2010
;
19
(
1
):
29
-
51
.
31.
Therneau
TM
,
Grambsch
PM
.
Modeling Survival Data: Extending the Cox Model. Statistics for Biology and Health
.
Springer
;
2000
:
87
-
152
.
32.
Eichhorst
B
,
Robak
T
,
Montserrat
E
, et al
.
Chronic lymphocytic leukaemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up
.
Ann Oncol
.
2021
;
32
(
1
):
23
-
33
.
33.
Tusher
VG
,
Tibshirani
R
,
Chu
G
.
Significance analysis of microarrays applied to the ionizing radiation response
.
Proc Natl Acad Sci U S A
.
2001
;
98
(
9
):
5116
-
5121
.
34.
Packham
G
,
Krysov
S
,
Allen
A
, et al
.
The outcome of B-cell receptor signaling in chronic lymphocytic leukemia: proliferation or anergy
.
Haematologica
.
2014
;
99
(
7
):
1138
-
1148
.
35.
Karlić
R
,
Chung
HR
,
Lasserre
J
,
Vlahoviček
K
,
Vingron
M
.
Histone modification levels are predictive for gene expression
.
Proc Natl Acad Sci U S A
.
2010
;
107
(
7
):
2926
-
2931
.
36.
Navarro
A
,
Clot
G
,
Martínez-Trillos
A
, et al
.
Improved classification of leukemic B-cell lymphoproliferative disorders using a transcriptional and genetic classifier
.
Haematologica
.
2017
;
102
(
9
):
360
-
363
.
37.
Tong
X
,
Gui
H
,
Jin
F
, et al
.
Ataxin-1 and brother of ataxin-1 are components of the Notch signalling pathway
.
EMBO Rep
.
2011
;
12
(
5
):
428
-
435
.
38.
Edelmann
J
.
NOTCH1 signalling: a key pathway for the development of high-risk chronic lymphocytic leukaemia
.
Front Oncol
.
2022
;
12
:
1019730
.
39.
Mangolini
M
,
Maiques-Diaz
A
,
Charalampopoulou
S
, et al
.
Viral transduction of primary human lymphoma B cells reveals mechanisms of NOTCH-mediated immune escape
.
Nat Commun
.
2022
;
13
(
1
):
6220
.
40.
Onaindia
A
,
Gómez
S
,
Piris-Villaespesa
M
, et al
.
Chronic lymphocytic leukemia cells in lymph nodes show frequent NOTCH1 activation
.
Haematologica
.
2015
;
100
(
5
):
e200
-
e203
.
41.
Kluk
MJ
,
Ashworth
T
,
Wang
H
, et al
.
Gauging NOTCH1 activation in cancer using immunohistochemistry
.
PLoS One
.
2013
;
8
(
6
):
e67306
.
42.
Arruga
F
,
Gizdic
B
,
Serra
S
, et al
.
Functional impact of NOTCH1 mutations in chronic lymphocytic leukemia
.
Leukemia
.
2014
;
28
(
5
):
1060
-
1070
.
43.
López-Guerra
M
,
Xargay-Torrent
S
,
Fuentes
P
, et al
.
Specific NOTCH1 antibody targets DLL4-induced proliferation, migration, and angiogenesis in NOTCH1-mutated CLL cells
.
Oncogene
.
2020
;
39
(
6
):
1185
-
1197
.
44.
Rucci
N
,
Rufo
A
,
Alamanou
M
, et al
.
The glycosaminoglycan-binding domain of PRELP acts as a cell type-specific NF-kappaB inhibitor that impairs osteoclastogenesis.
.
J Cell Biol
.
2009
;
187
(
5
):
669
-
683
.
45.
Chen
J
,
McLean
PA
,
Neel
BG
,
Okunade
G
,
Shull
GE
,
Wortis
HH
.
CD22 attenuates calcium signaling by potentiating plasma membrane calcium-ATPase activity
.
Nat Immunol
.
2004
;
5
(
6
):
651
-
657
.
46.
McCarthy
BA
,
Yancopoulos
S
,
Tipping
M
, et al
.
A seven-gene expression panel distinguishing clonal expansions of pre-leukemic and chronic lymphocytic leukemia B cells from normal B lymphocytes
.
Immunol Res
.
2015
;
63
(
1-3
):
90
-
100
.
47.
Zhu
M
,
Granillo
O
,
Wen
R
, et al
.
Negative regulation of lymphocyte activation by the adaptor protein LAX
.
J Immunol
.
2005
;
174
(
9
):
5612
-
5619
.
48.
Johnston
HE
,
Carter
MJ
,
Larrayoz
M
, et al
.
Proteomics profiling of CLL versus healthy B-cells identifies putative therapeutic targets and a subtype-independent signature of spliceosome dysregulation
.
Mol Cell Proteomics
.
2018
;
17
(
4
):
776
-
791
.
49.
Pan
S
,
An
P
,
Zhang
R
,
He
X
,
Yin
G
,
Min
W
.
Etk/Bmx as a tumor necrosis factor receptor type 2-specific kinase: role in endothelial cell migration and angiogenesis
.
Mol Cell Biol
.
2002
;
22
(
21
):
7512
-
7523
.
50.
Jelinek
DF
,
Tschumper
RC
,
Stolovitzky
GA
, et al
.
Identification of a global gene expression signature of B-chronic lymphocytic leukemia
.
Mol Cancer Res
.
2003
;
1
(
5
):
346
-
361
.
51.
Klein
U
,
Tu
Y
,
Stolovitzky
GA
, et al
.
Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells
.
J Exp Med
.
2001
;
194
(
11
):
1625
-
1638
.
52.
Dong
M
,
Blobe
GC
.
Role of transforming growth factor-β in hematologic malignancies
.
Blood
.
2006
;
107
(
12
):
4589
-
4596
.
53.
Rice
NR
,
MacKichan
ML
,
Israel
A
.
The precursor of NF-kappa B p50 has I kappa B-like functions
.
Cell
.
1992
;
71
(
2
):
243
-
253
.
54.
Hansen
SK
,
Nerlov
C
,
Zabel
U
, et al
.
A novel complex between the p65 subunit of NF-κB and c-Rel binds to a DNA element involved in the phorbol ester induction of the human urokinase gene
.
EMBO Journal
.
1992
;
11
(
1
):
205
-
213
.
55.
Müller
CW
,
Rey
FA
,
Sodeoka
M
,
Verdine
GL
,
Harrison
SC
.
Structure of the nf-κb p50 homodimer bound to dna
.
Nature
.
1995
;
373
(
6512
):
311
-
317
.
56.
Nolan
GP
,
Ghosh
S
,
Liou
HC
,
Tempst
P
,
Baltimore
D
.
DNA binding and IκB inhibition of the cloned p65 subunit of NF-κB, a rel-related polypeptide
.
Cell
.
1991
;
64
(
5
):
961
-
969
.
57.
Schewe
DM
,
Aguirre-Ghiso
JA
.
ATF6α-Rheb-mTOR signaling promotes survival of dormant tumor cells in vivo
.
Proc Natl Acad Sci U S A
.
2008
;
105
(
30
):
10519
-
10524
.
58.
Blackwood
EA
,
Hofmann
C
,
Santo Domingo
M
, et al
.
ATF6 regulates cardiac hypertrophy by transcriptional induction of the mTORC1 activator, Rheb
.
Circ Res
.
2019
;
124
(
1
):
79
-
93
.
59.
Frolova
O
,
Samudio
I
,
Benito
J
, et al
.
Regulation of HIF-1α signaling and chemoresistance in acute lymphocytic leukemia under hypoxic conditions of the bone marrow microenvironment
.
Cancer Biol Ther
.
2012
;
13
(
10
):
858
-
870
.
60.
Land
SC
,
Tee
AR
.
Hypoxia-inducible factor 1α is regulated by the mammalian target of rapamycin (mTOR) via an mTOR signaling motif
.
J Biol Chem
.
2007
;
282
(
28
):
20534
-
20543
.
61.
Dodd
KM
,
Yang
J
,
Shen
MH
,
Sampson
JR
,
Tee
AR
.
mTORC1 drives HIF-1α and VEGF-A signalling via multiple mechanisms involving 4E-BP1, S6K1 and STAT3
.
Oncogene
.
2015
;
34
(
17
):
2239
-
2250
.
62.
Csibi
A
,
Lee
G
,
Yoon
SO
, et al
.
The mTORC1/S6K1 pathway regulates glutamine metabolism through the eif4b-dependent control of c-Myc translation
.
Curr Biol
.
2014
;
24
(
19
):
2274
-
2280
.
63.
Torrence
ME
,
Macarthur
MR
,
Hosios
AM
, et al
.
The mtorc1-mediated activation of atf4 promotes protein and glutathione synthesis downstream of growth signals
.
Elife
.
2021
;
10
:
e63326
.
64.
Awasthi
P
,
Foiani
M
,
Kumar
A
.
ATM and ATR signaling at a glance
.
J Cell Sci
.
2015
;
128
(
23
):
4255
-
4262
.
65.
Lütge
A
,
Lu
J
,
Hüllein
J
, et al
.
Subgroup-specific gene expression profiles and mixed epistasis in chronic lymphocytic leukemia
.
Haematologica
.
2023
;
108
(
10
):
2664
-
2676
.
66.
Minici
C
,
Gounari
M
,
Übelhart
R
, et al
.
Distinct homotypic B-cell receptor interactions shape the outcome of chronic lymphocytic leukaemia
.
Nat Commun
.
2017
;
8
(
1
):
15746
.
67.
Herishanu
Y
,
Pérez-Galán
P
,
Liu
D
, et al
.
The lymph node microenvironment promotes B-cell receptor signaling, NF-κB activation, and tumor proliferation in chronic lymphocytic leukemia
.
Blood
.
2011
;
117
(
2
):
563
-
574
.
68.
Krenn
PW
,
Hofbauer
SW
,
Pucher
S
, et al
.
ILK induction in lymphoid organs by a TNFα-NF-κB-regulated pathway promotes the development of chronic lymphocytic leukemia
.
Cancer Res
.
2016
;
76
(
8
):
2186
-
2196
.
69.
Herndon
TM
,
Chen
SS
,
Saba
NS
, et al
.
Direct in vivo evidence for increased proliferation of CLL cells in lymph nodes compared to bone marrow and peripheral blood
.
Leukemia
.
2017
;
31
(
6
):
1340
-
1347
.
70.
Burger
JA
.
Treatment of chronic lymphocytic leukemia
.
N Engl J Med
.
2020
;
383
(
5
):
460
-
473
.
71.
Calissano
C
,
Damle
RN
,
Marsilio
S
, et al
.
Intraclonal complexity in chronic lymphocytic leukemia: Fractions enriched in recently born/divided and older/quiescent cells
.
Mol Med
.
2011
;
17
(
11-12
):
1374
-
1382
.
72.
Decker
T
,
Schneller
F
,
Sparwasser
T
, et al
.
Immunostimulatory CpG-oligonucleotides cause proliferation, cytokine production, and an immunogenic phenotype in chronic lymphocytic leukemia B cells
.
Blood
.
2000
;
95
(
3
):
999
-
1006
.
73.
Tarnani
M
,
Laurenti
L
,
Longo
PG
, et al
.
The proliferative response to CpG-ODN stimulation predicts PFS, TTT and OS in patients with chronic lymphocytic leukemia
.
Leuk Res
.
2010
;
34
(
9
):
1189
-
1194
.
74.
Stevenson
FK
,
Forconi
F
,
Kipps
TJ
.
Exploring the pathways to chronic lymphocytic leukemia
.
Blood
.
2021
;
138
(
10
):
827
-
835
.
75.
Zhu
M
,
Janssen
E
,
Leung
K
,
Zhang
W
.
Molecular cloning of a novel gene encoding a membrane-associated Adaptor protein (LAX) in lymphocyte signaling
.
J Biol Chem
.
2002
;
277
(
48
):
46151
-
46158
.
76.
Dürr
C
,
Hanna
BS
,
Schulz
A
, et al
.
Tumor necrosis factor receptor signaling is a driver of chronic lymphocytic leukemia that can be therapeutically targeted by the flavonoid wogonin
.
Haematologica
.
2018
;
103
(
4
):
688
-
697
.
77.
Ferrajoli
A
,
Keating
MJ
,
Manshouri
T
, et al
.
The clinical significance of tumor necrosis factor-α plasma level in patients having chronic lymphocytic leukemia
.
Blood
.
2002
;
100
(
4
):
1215
-
1219
.
78.
Meier-Abt
F
,
Lu
J
,
Cannizzaro
E
, et al
.
The protein landscape of chronic lymphocytic leukemia
.
Blood
.
2021
;
138
(
24
):
2514
-
2525
.
79.
Veldman-Jones
MH
,
Lai
Z
,
Wappett
M
, et al
.
Reproducible, quantitative, and flexible molecular subtyping of clinical DLBCL samples using the NanoString nCounter system
.
Clin Cancer Res
.
2015
;
21
(
10
):
2367
-
2378
.
You do not currently have access to this content.
Sign in via your Institution