• IL-1 and TNF-α specifically increase CEBPB levels and protect M4/M5 cells from venetoclax and MDM2 inhibitors, but not M0/M1 leukemia cells.

  • The CEBPB-IL-1/TNF-α-monocyte differentiation positive feedback loop promotes intrinsic and extrinsic drug resistance in M4/M5 leukemia.

Abstrat

MDM2 inhibitors are promising therapeutics for acute myeloid leukemia (AML) with wild-type TP53. Through an integrated analysis of functional genomic data from primary patient samples, we found that an MDM2 inhibitor, idasanutlin, like venetoclax, is ineffective against monocytic leukemia (French-American-British [FAB] subtype M4/M5). To dissect the underlying resistance mechanisms, we explored both intrinsic and extrinsic factors. We found that monocytic leukemia cells express elevated levels of CEBPB, which promote monocytic differentiation, suppress CASP3 and CASP6, and upregulate MCL1, BCL2A1, and the interleukin (IL-1)/tumor necrosis factor alpha (TNF-α)/NF-κB pathway members, thereby conferring drug resistance to a broad range of MDM2 inhibitors, BH3 mimetics, and venetoclax combinations. In addition, aberrant monocytes in M4/M5 leukemia produce elevated levels of IL-1 and TNF-α, which promote monocytic differentiation and upregulate inflammatory cytokines and receptors, thereby extrinsically protecting leukemia blasts from venetoclax and MDM2 inhibition. Interestingly, IL-1β and TNF-α only increase CEBPB levels and protect M4/M5 cells from these drugs but not M0/M1 leukemia cells. Treatment with venetoclax and idasanutlin induces compensatory upregulation of CEBPB and the IL-1/TNF-α/NF-κB pathway independent of the FAB subtype, indicating drug-induced compensatory protection mechanisms. The combination of venetoclax or idasanutlin with inhibitors that block the IL-1/TNF-α pathway demonstrates synergistic cytotoxicity in M4/M5 AML. As such, we uncovered a targetable positive feedback loop that involves CEBPB, IL-1/TNF-α, and monocyte differentiation in M4/M5 leukemia and promotes both intrinsic and extrinsic drug resistance and drug-induced protection against venetoclax and MDM2 inhibitors.

1.
Fischer
M
.
Census and evaluation of p53 target genes
.
Oncogene
.
2017
;
36
(
28
):
3943
-
3956
.
2.
Mills
KD
.
Tumor suppression: putting p53 in context
.
Cell Cycle
.
2013
;
12
(
22
):
3461
-
3462
.
3.
Kastenhuber
ER
,
Lowe
SW
.
Putting p53 in context
.
Cell
.
2017
;
170
(
6
):
1062
-
1078
.
4.
Kubbutat
MHG
,
Jones
SN
,
Vousden
KH
.
Regulation of p53 stability by Mdm2
.
Nature
.
1997
;
387
(
6630
):
299
-
303
.
5.
Haupt
Y
,
Maya
R
,
Kazaz
A
,
Oren
M
.
Mdm2 promotes the rapid degradation of p53
.
Nature
.
1997
;
387
(
6630
):
296
-
299
.
6.
Prokocimer
M
,
Molchadsky
A
,
Rotter
V
.
Dysfunctional diversity of p53 proteins in adult acute myeloid leukemia: projections on diagnostic workup and therapy
.
Blood
.
2017
;
130
(
6
):
699
-
712
.
7.
Watanabe
T
,
Hotta
T
,
Ichikawa
A
, et al
.
The MDM2 oncogene overexpression in chronic lymphocytic leukemia and low-grade lymphoma of B-cell origin
.
Blood
.
1994
;
84
(
9
):
3158
-
3165
.
8.
Wang
S
,
Zhao
Y
,
Aguilar
A
,
Bernard
D
,
Yang
CY
.
Targeting the MDM2-p53 protein-protein interaction for new cancer therapy: progress and challenges
.
Cold Spring Harb Perspect Med
.
2017
;
7
(
5
):
a026245
.
9.
Zhao
Y
,
Aguilar
A
,
Bernard
D
,
Wang
S
.
Small-molecule inhibitors of the MDM2-p53 protein-protein interaction (MDM2 inhibitors) in clinical trials for cancer treatment
.
J Med Chem
.
2015
;
58
(
3
):
1038
-
1052
.
10.
Vernooij
L
,
Bate-Eya
LT
,
Alles
LK
, et al
.
High-throughput screening identifies idasanutlin as a resensitizing drug for venetoclax-resistant neuroblastoma cells
.
Mol Cancer Ther
.
2021
;
20
(
6
):
1161
-
1172
.
11.
Reis
B
,
Jukofsky
L
,
Chen
G
, et al
.
Clinical response to idasanutlin (RG7388) in acute myeloid leukemia patients is associated with pre-treatment MDM2 protein expression in leukemic blasts and leukemic stem cells
.
Haematologica
.
2016
;
101
(
5
):
e185
-
e188
.
12.
Lehmann
C
,
Friess
T
,
Birzele
F
,
Kiialainen
A
,
Dangl
M
.
Superior anti-tumor activity of the MDM2 antagonist idasanutlin and the Bcl-2 inhibitor venetoclax in p53 wild-type acute myeloid leukemia models
.
J Hematol Oncol
.
2016
;
9
(
1
):
50
.
13.
Khurana
A
,
Shafer
DA
.
MDM2 antagonists as a novel treatment option for acute myeloid leukemia: perspectives on the therapeutic potential of idasanutlin (RG7388)
.
Onco Targets Ther
.
2019
;
12
:
2903
-
2910
.
14.
Blotner
S
,
Chen
LC
,
Ferlini
C
,
Zhi
J
.
Phase 1 summary of plasma concentration–QTc analysis for idasanutlin, an MDM2 antagonist, in patients with advanced solid tumors and AML
.
Cancer Chemother Pharmacol
.
2018
;
81
(
3
):
597
-
607
.
15.
Mascarenhas
J
,
Lu
M
,
Kosiorek
H
, et al
.
Oral idasanutlin in patients with polycythemia vera
.
Blood
.
2019
;
134
(
6
):
525
-
533
.
16.
Montesinos
P
,
Esteve
J
,
Konopleva
M
, et al
.
MIRROS: an ongoing randomized phase 3 trial of idasanutlin + ARA-C in patients with relapsed or refractory acute myeloid leukemia
.
J Clin Oncol
.
2019
;
37
(
suppl 15
):
TPS7063
. TPS7063.
17.
Cheson
BD
,
Cassileth
PA
,
Head
DR
, et al
.
Report of the national cancer institute-sponsored workshop on definitions of diagnosis and response in acute myeloid leukemia
.
J Clin Oncol
.
1990
;
8
(
5
):
813
-
819
.
18.
Foon
KA
,
Todd
RF
.
Immunologic classification of leukemia and lymphoma
.
Blood
.
1986
;
68
(
1
):
1
-
31
.
19.
Arber
DA
,
Orazi
A
,
Hasserjian
R
, et al
.
The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia
.
Blood
.
2016
;
127
(
20
):
2391
-
2405
.
20.
Khoury
JD
,
Solary
E
,
Abla
O
, et al
.
The 5th edition of the World Health Organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms
.
Leukemia
.
2022
;
36
(
7
):
1703
-
1719
.
21.
Kurtz
SE
,
Eide
CA
,
Kaempf
A
, et al
.
Associating drug sensitivity with differentiation status identifies effective combinations for acute myeloid leukemia
.
Blood Adv
.
2022
;
6
(
10
):
3062
-
3067
.
22.
Kuusanmäki
H
,
Leppä
A-M
,
Pölönen
P
, et al
.
Phenotype-based drug screening reveals association between venetoclax response and differentiation stage in acute myeloid leukemia
.
Haematologica
.
2020
;
105
(
3
):
708
-
720
.
23.
Pei
S
,
Pollyea
DA
,
Gustafson
A
, et al
.
Monocytic subclones confer resistance to venetoclax-based therapy in acute myeloid leukemia patients
.
Cancer Discov
.
2020
;
10
(
4
):
536
-
551
.
24.
Romine
KA
,
Nechiporuk
T
,
Bottomly
D
, et al
.
Monocytic differentiation and AHR signaling as primary nodes of BET inhibitor response in acute myeloid leukemia
.
Blood Cancer Discov
.
2021
;
2
(
5
):
518
-
531
.
25.
Zhang
H
,
Wilmot
B
,
Bottomly
D
, et al
.
Biomarkers predicting venetoclax sensitivity and strategies for venetoclax combination treatment
.
Blood
.
2018
;
132
(
suppl 1
):
175
.
26.
Zhang
H
,
Nakauchi
Y
,
Köhnke
T
, et al
.
Integrated analysis of patient samples identifies biomarkers for venetoclax efficacy and combination strategies in acute myeloid leukemia
.
Nat Cancer
.
2020
;
1
(
8
):
826
-
839
.
27.
Savoy
L
,
Bottomly
D
,
Chen
R
, et al
.
Characterize biomarkers and mechanisms of resistance for MDM2 inhibitors in AML
.
Blood
.
2022
;
140
(
suppl 1
):
8778
-
8779
.
28.
Savoy
L
,
Long
N
,
Lee
H
, et al
.
CDK12/13 dual inhibitors are potential therapeutics for acute myeloid leukemia
.
Br J Haematol
.
2023
;
202
(
1
):
195
-
198
.
29.
Trino
S
,
Laurenzana
I
,
Lamorte
D
, et al
.
Acute myeloid leukemia cells functionally compromise hematopoietic stem/progenitor cells inhibiting normal hematopoiesis through the release of extracellular vesicles
.
Front Oncol
.
2022
;
12
:
824562
.
30.
Gao
XZ
,
Bi
S
,
Copra
H
, et al
.
Cytokine gene activity in AML cells in vivo in patients
.
Leuk Res
.
1998
;
22
(
5
):
429
-
438
.
31.
Reikvam
H
,
Brenner
AK
,
Hagen
KM
, et al
.
The cytokine-mediated crosstalk between primary human acute myeloid cells and mesenchymal stem cells alters the local cytokine network and the global gene expression profile of the mesenchymal cells
.
Stem Cell Res
.
2015
;
15
(
3
):
530
-
541
.
32.
Carey
A
,
Edwards
DK
,
Eide
CA
, et al
.
Identification of interleukin-1 by functional screening as a key mediator of cellular expansion and disease progression in acute myeloid leukemia
.
Cell Rep
.
2017
;
18
(
13
):
3204
-
3218
.
33.
Pino
JC
,
Posso
C
,
Joshi
SK
, et al
.
Mapping the proteogenomic landscape enables prediction of drug response in acute myeloid leukemia
.
Cell Rep Med
.
2024
;
5
(
1
):
101359
.
34.
Bottomly
D
,
Long
N
,
Schultz
AR
, et al
.
Integrative analysis of drug response and clinical outcome in acute myeloid leukemia
.
Cancer Cell
.
2022
;
40
(
8
):
850
-
864.e9
.
35.
Tyner
JW
,
Tognon
CE
,
Bottomly
D
, et al
.
Functional genomic landscape of acute myeloid leukaemia
.
Nature
.
2018
;
562
(
7728
):
526
-
531
.
36.
Kytölä
S
,
Vänttinen
I
,
Ruokoranta
T
, et al
.
Ex vivo venetoclax sensitivity predicts clinical response in acute myeloid leukemia in the prospective VenEx trial
.
Blood
.
2025
;
145
(
4
):
409
-
421
.
37.
Becker
PS
.
VenEx precisely predicts ven-aza response
.
Blood
.
2025
;
145
(
4
):
353
-
354
.
38.
White
BS
,
Khan
SA
,
Mason
MJ
, et al
.
Bayesian multi-source regression and monocyte-associated gene expression predict BCL-2 inhibitor resistance in acute myeloid leukemia
.
NPJ Precis Oncol
.
2021
;
5
(
1
):
71
.
39.
Pei
S
,
Pollyea
DA
,
Gustafson
A
, et al
.
Monocytic subclones confer resistance to venetoclax-based therapy in patients with acute myeloid leukemia
.
Cancer Discov
.
2020
;
10
(
4
):
536
-
551
.
40.
Kramer
MH
,
Zhang
Q
,
Sprung
R
, et al
.
Proteomic and phosphoproteomic landscapes of acute myeloid leukemia
.
Blood
.
2022
;
140
(
13
):
1533
-
1548
.
41.
Bagger
FO
,
Kinalis
S
,
Rapin
N
.
BloodSpot: a database of healthy and malignant haematopoiesis updated with purified and single cell mRNA sequencing profiles
.
Nucleic Acids Res
.
2019
;
47
(
D1
):
D881
-
D885
.
42.
Modak
RV
,
Damnernsawad
A
,
Laderas
T
, et al
.
Abstract 5942: an integrated approach reveals novel extrinsic pathways and cytokine signatures associated with drug response in acute myeloid leukemia
.
Cancer Res
.
2020
;
80
(
suppl 16
):
5942
.
43.
Wu
J
,
Xiao
Y
,
Sun
J
, et al
.
A single-cell survey of cellular hierarchy in acute myeloid leukemia
.
J Hematol Oncol
.
2020
;
13
(
1
):
128
.
44.
Sheikh
MS
,
Fornace
AJ
.
Death and decoy receptors and p53-mediated apoptosis
.
Leukemia
.
2000
;
14
(
8
):
1509
-
1513
.
45.
Tseng
HY
,
Jiang
CC
,
Croft
A
, et al
.
Contrasting effects of nutlin-3 on TRAIL- and docetaxel-induced apoptosis due to upregulation of TRAIL-R2 and Mcl-1 in human melanoma cells
.
Mol Cancer Ther
.
2010
;
9
(
12
):
3363
-
3374
.
46.
Meijer
A
,
Kruyt
FAE
,
Van Der Zee
AGJ
, et al
.
Nutlin-3 preferentially sensitises wild-type p53-expressing cancer cells to DR5-selective TRAIL over rhTRAIL
.
Br J Cancer
.
2013
;
109
(
10
):
2685
-
2695
.
47.
Liu
Y
,
Leslie
PL
,
Zhang
Y
.
Life and death decision-making by p53 and implications for cancer immunotherapy
.
Trends Cancer
.
2021
;
7
(
3
):
226
-
239
.
48.
Robinson
GW
,
Johnson
PF
,
Hennighausen
L
,
Sterneck
E
.
The C/EBPβ transcription factor regulates epithelial cell proliferation and differentiation in the mammary gland
.
Genes Dev
.
1998
;
12
(
12
):
1907
-
1916
.
49.
Sterneck
E
,
Tessarollo
L
,
Johnson
PF
.
An essential role for C/EBPβ in female reproduction
.
Genes Dev
.
1997
;
11
(
17
):
2153
-
2162
.
50.
Sato
A
,
Yokota
A
,
Hayashi
Y
, et al
.
C/EBPβ isoforms regulate proliferation and differentiation of regenerating hematopoietic stem/progenitor cells
.
Blood Adv
.
2020
;
4
(
14
):
3343
-
3356
.
51.
Lekstrom-Himes
J
,
Xanthopoulos
KG
.
Biological role of the CCAAT/enhancer-binding protein family of transcription factors
.
J Biol Chem
.
1998
;
273
(
44
):
28545
-
28548
.
52.
Tanaka
T
,
Akira
S
,
Yoshida
K
, et al
.
Targeted disruption of the NF-IL6 gene discloses its essential role in bacteria killing and tumor cytotoxicity by macrophages
.
Cell
.
1995
;
80
(
2
):
353
-
361
.
53.
Poli
V
.
The role of C/EBP isoforms in the control of inflammatory and native immunity functions
.
J Biol Chem
.
1998
;
273
(
45
):
29279
-
29282
.
54.
Darlington
GJ
,
Ross
SE
,
MacDougald
OA
.
The role of C/EBP genes in adipocyte differentiation
.
J Biol Chem
.
1998
;
273
(
46
):
30057
-
30060
.
55.
Croniger
C
,
Trus
M
,
Lysek-Stupp
K
, et al
.
Role of the isoforms of CCAAT/enhancer-binding protein in the initiation of phosphoenolpyruvate carboxykinase (GTP) gene transcription at birth
.
J Biol Chem
.
1997
;
272
(
42
):
26306
-
26312
.
56.
Kalvakolanu
DV
.
Alternate interferon signaling pathways
.
Pharmacol Ther
.
2003
;
100
(
1
):
1
-
29
.
57.
Hirai
H
,
Zhang
P
,
Dayaram
T
, et al
.
C/EBPβ is required for “emergency” granulopoiesis
.
Nat Immunol
.
2006
;
7
(
7
):
732
-
739
.
58.
Hoare
M
,
Ito
Y
,
Kang
TW
, et al
.
NOTCH1 mediates a switch between two distinct secretomes during senescence
.
Nat Cell Biol
.
2016
;
18
(
9
):
979
-
992
.
59.
Cardinaux
JR
,
Allaman
I
,
Magistretti
PJ
.
Pro-inflammatory cytokines induce the transcription factors C/EBPβ and C/EBPδ in astrocytes
.
Glia
.
2000
;
29
(
1
):
91
-
97
.
60.
Marigo
I
,
Bosio
E
,
Solito
S
, et al
.
Tumor-induced tolerance and immune suppression depend on the C/EBPβ transcription factor
.
Immunity
.
2010
;
32
(
6
):
790
-
802
.
61.
He
M
,
Xu
Z
,
Ding
T
,
Kuang
DM
,
Zheng
L
.
MicroRNA-155 regulates inflammatory cytokine production in tumor-associated macrophages via targeting C/EBPβ
.
Cell Mol Immunol
.
2009
;
6
(
5
):
343
-
352
.
62.
AlSudais
H
,
Rajgara
R
,
Saleh
A
,
Wiper-Bergeron
N
.
C/EBPβ promotes the expression of atrophy-inducing factors by tumours and is a central regulator of cancer cachexia
.
J Cachexia Sarcopenia Muscle
.
2022
;
13
(
1
):
743
-
757
.
63.
Wang
D
,
Yang
L
,
Yu
W
, et al
.
Colorectal cancer cell-derived CCL20 recruits regulatory T cells to promote chemoresistance via FOXO1/CEBPB/NF-κB signaling. [published correction appears in J Immunother Cancer. 2022 Jun;10(6):e0701-2corr1]
.
J Immunother Cancer
.
2019
;
7
(
1
):
215
.
64.
Jordan
KR
,
Sikora
MJ
,
Slansky
JE
, et al
.
The capacity of the ovarian cancer tumor microenvironment to integrate inflammation signaling conveys a shorter disease-free interval
.
Clin Cancer Res
.
2020
;
26
(
23
):
6362
-
6373
.
65.
Campos
L
,
Rouault
JP
,
Sabido
O
, et al
.
High expression of bcl-2 protein in acute myeloid leukemia cells is associated with poor response to chemotherapy
.
Blood
.
1993
;
81
(
11
):
3091
-
3096
.
66.
Pan
R
,
Ruvolo
V
,
Mu
H
, et al
.
Synthetic lethality of combined Bcl-2 inhibition and p53 activation in AML: mechanisms and superior antileukemic efficacy
.
Cancer Cell
.
2017
;
32
(
6
):
748
-
760.e6
.
67.
Barak
Y
,
Gottlieb
E
,
Juven-Gershon
T
,
Oren
M
.
Regulation of mdm2 expression by p53: alternative promoters produce transcripts with nonidentical translation potential
.
Genes Dev
.
1994
;
8
(
15
):
1739
-
1749
.
You do not currently have access to this content.
Sign in via your Institution