• Structure-based mutational studies reveal signatures of structurally distinct conformational epitopes in DI, epitope I, and epitope II.

  • Epitope I is enriched in patients with vascular-obstetric APS; epitope diversity may help identify APS phenotypes and predict clinical outcomes.

Abstract

Antiphospholipid antibodies targeting β2-glycoprotein I (β2GPI) are a hallmark of antiphospholipid syndrome (APS), associated with an increased risk of thrombosis and pregnancy morbidity. Among these, antibodies targeting domain I (DI) are common in individuals at higher risk; however, their epitopes and prevalence among APS phenotypes remain unclear. Here, we use a large collection of 29 structurally and functionally validated β2GPI variants to provide new insights into the molecular mechanisms of autoantibody recognition in APS. Using the prototypic human-derived monoclonal anti-DI antibody MBB2, we identified positively charged residue R39 as the key driver of MBB2 binding, followed by residues R43, N56, and T57. Structural analyses revealed that although R39 is solvent exposed, R43 is not, because it is caged by residues N56 and T57. The narrow epitope footprint explains why MBB2 exhibits a modest affinity for soluble β2GPI. The cage structure accounts for the epitope being conformational rather than linear. Mutational analyses of immunoglobulin G anti-β2GPI antibodies from 52 patients with triple-positive APS, 37 with a history of thrombosis and 15 nonvascular obstetric patients, confirmed significant reactivity against DI and showed signatures of 2 conformational epitopes: one similar to MBB2 (epitope I), in which the presence of R39 is essential, and another that does not require R39 (epitope II). Although less frequent than epitope II in our cohort, epitope I reactivity was notably enriched in patients with vascular-obstetric APS. Varying epitope specificities for DI may therefore aid in identifying different APS phenotypes and predicting clinical outcomes.

1.
Knight
JS
,
Erkan
D
.
Rethinking antiphospholipid syndrome to guide future management and research
.
Nat Rev Rheumatol
.
2024
;
20
(
6
):
377
-
388
.
2.
Pengo
V
,
Biasiolo
A
,
Pegoraro
C
,
Cucchini
U
,
Noventa
F
,
Iliceto
S
.
Antibody profiles for the diagnosis of antiphospholipid syndrome
.
Thromb Haemost
.
2005
;
93
(
6
):
1147
-
1152
.
3.
Meroni
PL
,
Borghi
MO
,
Raschi
E
,
Tedesco
F
.
Pathogenesis of antiphospholipid syndrome: understanding the antibodies
.
Nat Rev Rheumatol
.
2011
;
7
(
6
):
330
-
339
.
4.
de Groot
PG
,
Urbanus
RT
.
The significance of autoantibodies against beta2-glycoprotein I
.
Blood
.
2012
;
120
(
2
):
266
-
274
.
5.
Miyakis
S
,
Lockshin
MD
,
Atsumi
T
, et al
.
International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS)
.
J Thromb Haemost
.
2006
;
4
(
2
):
295
-
306
.
6.
Knight
JS
,
Branch
DW
,
Ortel
TL
.
Antiphospholipid syndrome: advances in diagnosis, pathogenesis, and management
.
BMJ
.
2023
;
380
:
e069717
.
7.
Chaturvedi
S
,
McCrae
KR
.
Diagnosis and management of the antiphospholipid syndrome
.
Blood Rev
.
2017
;
31
(
6
):
406
-
417
.
8.
Kumar
S
,
Wulf
J
,
Basore
K
,
Pozzi
N
.
Structural analyses of beta(2)-glycoprotein I: is there a circular conformation?
.
J Thromb Haemost
.
2023
;
21
(
12
):
3511
-
3521
.
9.
Ruben
E
,
Planer
W
,
Chinnaraj
M
, et al
.
The J-elongated conformation of beta(2)-glycoprotein I predominates in solution: implications for our understanding of antiphospholipid syndrome
.
J Biol Chem
.
2020
;
295
(
31
):
10794
-
10806
.
10.
Kumar
S
,
Pozzi
N
.
Understanding the structure of β2-glycoprotein I: new insights and future paths for antiphospholipid syndrome
.
Blood Vessel Thromb Hemost
.
2025
;
2
(
2
):
100041
.
11.
Soares
DC
,
Barlow
PN
. Complement control protein modules in the regulators of complement activation. In:
Morikis
D
,
Lambris
JD
, eds.
Structural Biology of the Complement System
.
Taylor & Francis
;
2015
:
19
-
56
.
12.
Hasdemir
HS
,
Pozzi
N
,
Tajkhorshid
E
.
Atomistic characterization of beta2-glycoprotein I domain V interaction with anionic membranes
.
J Thromb Haemost
.
2024
;
22
(
11
):
3277
-
3289
.
13.
Hunt
JE
,
Simpson
RJ
,
Krilis
SA
.
Identification of a region of beta 2-glycoprotein I critical for lipid binding and anti-cardiolipin antibody cofactor activity
.
Proc Natl Acad Sci U S A
.
1993
;
90
(
6
):
2141
-
2145
.
14.
Hoshino
M
,
Hagihara
Y
,
Nishii
I
,
Yamazaki
T
,
Kato
H
,
Goto
Y
.
Identification of the phospholipid-binding site of human beta(2)-glycoprotein I domain V by heteronuclear magnetic resonance
.
J Mol Biol
.
2000
;
304
(
5
):
927
-
939
.
15.
Lee
CJ
,
De Biasio
A
,
Beglova
N
.
Mode of interaction between beta2GPI and lipoprotein receptors suggests mutually exclusive binding of beta2GPI to the receptors and anionic phospholipids
.
Structure
.
2010
;
18
(
3
):
366
-
376
.
16.
Iverson
GM
,
Reddel
S
,
Victoria
EJ
, et al
.
Use of single point mutations in domain I of beta 2-glycoprotein I to determine fine antigenic specificity of antiphospholipid autoantibodies
.
J Immunol
.
2002
;
169
(
12
):
7097
-
7103
.
17.
Ioannou
Y
,
Pericleous
C
,
Giles
I
,
Latchman
DS
,
Isenberg
DA
,
Rahman
A
.
Binding of antiphospholipid antibodies to discontinuous epitopes on domain I of human beta(2)-glycoprotein I: mutation studies including residues R39 to R43
.
Arthritis Rheum
.
2007
;
56
(
1
):
280
-
290
.
18.
Igarashi
M
,
Matsuura
E
,
Igarashi
Y
, et al
.
Human beta2-glycoprotein I as an anticardiolipin cofactor determined using mutants expressed by a baculovirus system
.
Blood
.
1996
;
87
(
8
):
3262
-
3270
.
19.
George
J
,
Gilburd
B
,
Hojnik
M
, et al
.
Target recognition of beta2-glycoprotein I (beta2GPI)-dependent anticardiolipin antibodies: evidence for involvement of the fourth domain of beta2GPI in antibody binding
.
J Immunol
.
1998
;
160
(
8
):
3917
-
3923
.
20.
Yang
CD
,
Chen
SL
,
Shen
N
,
Qi
M
,
Xu
F
.
Detection of anti-recombinant beta 2-glycoprotein 1 and anti-recombinant beta 2-glycoprotein 1 fifth-domain antibodies in sera from patients with systemic lupus erythematosus
.
Rheumatol Int
.
1998
;
18
(
1
):
5
-
10
.
21.
Iverson
GM
,
Victoria
EJ
,
Marquis
DM
.
Anti-beta2 glycoprotein I (beta2GPI) autoantibodies recognize an epitope on the first domain of beta2GPI
.
Proc Natl Acad Sci U S A
.
1998
;
95
(
26
):
15542
-
15546
.
22.
Reddel
SW
,
Wang
YX
,
Sheng
YH
,
Krilis
SA
.
Epitope studies with anti-beta 2-glycoprotein I antibodies from autoantibody and immunized sources
.
J Autoimmun
.
2000
;
15
(
2
):
91
-
96
.
23.
McNeeley
PA
,
Dlott
JS
,
Furie
RA
, et al
.
Beta2-glycoprotein I-dependent anticardiolipin antibodies preferentially bind the amino terminal domain of beta2-glycoprotein I
.
Thromb Haemost
.
2001
;
86
(
2
):
590
-
595
.
24.
Salem
D
,
Subang
R
,
Kuwana
M
,
Levine
JS
,
Rauch
J
.
T cells from induced and spontaneous models of SLE recognize a common T cell epitope on beta2-glycoprotein I
.
Cell Mol Immunol
.
2019
;
16
(
8
):
685
-
693
.
25.
de Laat
B
,
Derksen
RH
,
Urbanus
RT
,
de Groot
PG
.
IgG antibodies that recognize epitope Gly40-Arg43 in domain I of beta 2-glycoprotein I cause LAC, and their presence correlates strongly with thrombosis
.
Blood
.
2005
;
105
(
4
):
1540
-
1545
.
26.
Banzato
A
,
Pozzi
N
,
Frasson
R
, et al
.
Antibodies to domain I of beta(2)glycoprotein I are in close relation to patients risk categories in antiphospholipid syndrome (APS)
.
Thromb Res
.
2011
;
128
(
6
):
583
-
586
.
27.
Pozzi
N
,
Banzato
A
,
Bettin
S
,
Bison
E
,
Pengo
V
,
De Filippis
V
.
Chemical synthesis and characterization of wild-type and biotinylated N-terminal domain 1-64 of beta2-glycoprotein I
.
Protein Sci
.
2010
;
19
(
5
):
1065
-
1078
.
28.
de Laat
B
,
van Berkel
M
,
Urbanus
RT
, et al
.
Immune responses against domain I of beta(2)-glycoprotein I are driven by conformational changes: domain I of beta(2)-glycoprotein I harbors a cryptic immunogenic epitope
.
Arthritis Rheum
.
2011
;
63
(
12
):
3960
-
3968
.
29.
Giles
IP
,
Isenberg
DA
,
Latchman
DS
,
Rahman
A
.
How do antiphospholipid antibodies bind beta2-glycoprotein I?
.
Arthritis Rheum
.
2003
;
48
(
8
):
2111
-
2121
.
30.
Tanimura
K
,
Jin
H
,
Suenaga
T
, et al
.
beta2-Glycoprotein I/HLA class II complexes are novel autoantigens in antiphospholipid syndrome
.
Blood
.
2015
;
125
(
18
):
2835
-
2844
.
31.
Dienava-Verdoold
I
,
Boon-Spijker
MG
,
de Groot
PG
, et al
.
Patient-derived monoclonal antibodies directed towards beta2 glycoprotein-1 display lupus anticoagulant activity
.
J Thromb Haemost
.
2011
;
9
(
4
):
738
-
747
.
32.
de Moerloose
P
,
Fickentscher
C
,
Boehlen
F
,
Tiercy
JM
,
Kruithof
EKO
,
Brandt
KJ
.
Patient-derived anti-beta2GP1 antibodies recognize a peptide motif pattern and not a specific sequence of residues
.
Haematologica
.
2017
;
102
(
8
):
1324
-
1332
.
33.
Kumar
S
,
Chinnaraj
M
,
Planer
W
, et al
.
An allosteric redox switch in domain V of beta(2)-glycoprotein I controls membrane binding and anti-domain I autoantibody recognition
.
J Biol Chem
.
2021
;
297
(
2
):
100890
.
34.
Agostinis
C
,
Durigutto
P
,
Sblattero
D
, et al
.
A non-complement-fixing antibody to beta2 glycoprotein I as a novel therapy for antiphospholipid syndrome
.
Blood
.
2014
;
123
(
22
):
3478
-
3487
.
35.
Chinnaraj
M
,
Planer
W
,
Pengo
V
,
Pozzi
N
.
Discovery and characterization of 2 novel subpopulations of aPS/PT antibodies in patients at high risk of thrombosis
.
Blood Adv
.
2019
;
3
(
11
):
1738
-
1749
.
36.
Barbhaiya
M
,
Zuily
S
,
Naden
R
, et al
.
The 2023 ACR/EULAR antiphospholipid syndrome classification criteria
.
Arthritis Rheumatol
.
2023
;
75
(
10
):
1687
-
1702
.
37.
Devreese
KMJ
,
Ortel
TL
,
Pengo
V
,
de Laat
B
;
Subcommittee on Lupus Anticoagulant/Antiphospholipid Antibodies
.
Laboratory criteria for antiphospholipid syndrome: communication from the SSC of the ISTH
.
J Thromb Haemost
.
2018
;
16
(
4
):
809
-
813
.
38.
Schwarzenbacher
R
,
Zeth
K
,
Diederichs
K
, et al
.
Crystal structure of human beta2-glycoprotein I: implications for phospholipid binding and the antiphospholipid syndrome
.
EMBO J
.
1999
;
18
(
22
):
6228
-
6239
.
39.
Bouma
B
,
de Groot
PG
,
van den Elsen
JM
, et al
.
Adhesion mechanism of human beta(2)-glycoprotein I to phospholipids based on its crystal structure
.
EMBO J
.
1999
;
18
(
19
):
5166
-
5174
.
40.
Creighton
TE
. Proteins: Structures and Molecular Properties.
W.H. Freeman & Co Ltd
;
1993
.
41.
Beeg
M
,
Burti
C
,
Allocati
E
, et al
.
Surface plasmon resonance unveils important pitfalls of enzyme-linked immunoassay for the detection of anti-infliximab antibodies in patients' sera
.
Sci Rep
.
2021
;
11
(
1
):
14976
.
42.
Bobrovnik
SA
,
Demchenko
M
,
Komisarenko
S
,
Stevens
F
.
Traditional ELISA methods for antibody affinity determination fail to reveal the presence of low affinity antibodies in antisera: an alternative approach
.
J Mol Recognit
.
2010
;
23
(
5
):
448
-
456
.
43.
Languren
M
,
Becerril
B
,
Cabral
AR
, et al
.
Characterization of monoclonal anti-beta2-glycoprotein-I and anti-prothrombin antibody fragments generated by phage display from a patient with primary antiphospholipid syndrome
.
J Autoimmun
.
2006
;
26
(
1
):
57
-
65
.
44.
Lieby
P
,
Soley
A
,
Knapp
AM
, et al
.
Memory B cells producing somatically mutated antiphospholipid antibodies are present in healthy individuals
.
Blood
.
2003
;
102
(
7
):
2459
-
2465
.
45.
Dieudonné
Y
,
Lorenzetti
R
,
Rottura
J
, et al
.
Defective germinal center selection results in persistence of self-reactive B cells from the primary to the secondary repertoire in primary antiphospholipid syndrome
.
Nat Commun
.
2024
;
15
(
1
):
9921
.
46.
Lackner
KJ
,
Müller-Calleja
N
.
Antiphospholipid antibodies: their origin and development
.
Antibodies (Basel)
.
2016
;
5
(
2
):
15
.
47.
Chen
PP
,
Giles
I
.
Antibodies to serine proteases in the antiphospholipid syndrome
.
Curr Rheumatol Rep
.
2010
;
12
(
1
):
45
-
52
.
48.
Khandelwal
S
,
Barnes
A
,
Rauova
L
, et al
.
Complement mediates binding and procoagulant effects of ultralarge HIT immune complexes
.
Blood
.
2021
;
138
(
21
):
2106
-
2116
.
49.
Sikara
MP
,
Routsias
JG
,
Samiotaki
M
,
Panayotou
G
,
Moutsopoulos
HM
,
Vlachoyiannopoulos
PG
.
beta2 glycoprotein I (beta2GPI) binds platelet factor 4 (PF4): implications for the pathogenesis of antiphospholipid syndrome
.
Blood
.
2010
;
115
(
3
):
713
-
723
.
50.
Yong
J
,
Toh
CH
.
Rethinking coagulation: from enzymatic cascade and cell-based reactions to a convergent model involving innate immune activation
.
Blood
.
2023
;
142
(
25
):
2133
-
2145
.
51.
Pozzi
N
,
Di Cera
E
.
Dual effect of histone H4 on prothrombin activation
.
J Thromb Haemost
.
2016
;
14
(
9
):
1814
-
1818
.
52.
Moghbel
M
,
Roth
A
,
Baptista
D
, et al
.
Epitope of antiphospholipid antibodies retrieved from peptide microarray based on R39-R43 of beta2-glycoprotein I
.
Res Pract Thromb Haemost
.
2022
;
6
(
7
):
e12828
.
53.
Pengo
V
,
Pozzi
N
.
Lupus anticoagulant and antiprothrombin antibodies: embracing the future
.
J Thromb Haemost
.
2025
;
23
(
7
):
2262
-
2269
.
54.
Moyle
KA
,
Branch
DW
,
Peterson
LK
, et al
.
Association between novel antiphospholipid antibodies and adverse pregnancy outcomes
.
Obstet Gynecol
.
2025
;
145
(
1
):
55
-
64
.
You do not currently have access to this content.
Sign in via your Institution