• Germ line deletion of Tnfα results in irreversible anemia in an anemia of inflammation mouse model.

  • TNFα plays an important role in restoring steady-state erythropoiesis after inflammatory event.

Abstract

Anemia of inflammation (AI) is the second most common form of anemia and is prevalent in patients with chronic inflammatory states, such as infection, autoimmunity, and cancer. Interleukin 6 (IL-6) is well-known to induce the iron-sequestering hormone hepcidin, which results in iron-restricted anemia. The contributions of other proinflammatory cytokines, such as tumor necrosis factor-α (TNFα) and interferon gamma (IFNγ), are less understood in the pathophysiology of AI. This study investigated the role of TNFα in a mouse model of AI by administering heat-killed Brucella abortus (HKBA) to germ line TNFα knockout (KO) mice. We hypothesized that TNFα possessed an important role in restoring steady-state erythropoiesis after inflammatory insult. TNFαKO injected with HKBA displayed a chronic anemia, with elevated proinflammatory IL12p40 and IFNγ cytokines that did not resolve. However, IFNγKO and TNFαKO/FNγKO double knockout mice showed reduced inflammation and anemia following HKBA administration. Because IFNγKO displayed normal serum TNFα and IL12p40 levels, we hypothesized that the persistent anemia was IFNγ induced and TNFα was necessary for AI cessation. However, treatment with recombinant TNFα (rTNFα) accelerated death, while reducing IFNγ using an anti-IFNγ antibody (Ab) only briefly improved anemia. Only the combination of both the Ab and rTNFα together reversed the hyperinflammatory phenotype, restored erythropoiesis, and prevented death of TNFαKO + HKBA mice. Our data provide compelling evidence for an anti-inflammatory role of TNFα that is necessary for the restoration of erythropoiesis and mitigation of proinflammatory IFNγ action in a mouse model of AI.

1.
Ganz
T
.
Anemia of inflammation
.
N Engl J Med
.
2019
;
381
(
12
):
1148
-
1157
.
2.
Weiss
G
,
Ganz
T
,
Goodnough
LT
.
Anemia of inflammation
.
Blood
.
2019
;
133
(
1
):
40
-
50
.
3.
Crooks
CJ
,
West
J
,
Morling
JR
, et al
.
Anaemia of acute inflammation: a higher acute systemic inflammatory response is associated with a larger decrease in blood haemoglobin levels in patients with COVID-19 infection
.
Clin Med
.
2023
;
23
(
3
):
201
-
205
.
4.
Kalliolias
GD
,
Ivashkiv
LB
.
TNF biology, pathogenic mechanisms and emerging therapeutic strategies
.
Nat Rev Rheumatol
.
2016
;
12
(
1
):
49
-
62
.
5.
Papadaki
HA
,
Kritikos
HD
,
Valatas
V
,
Boumpas
DT
,
Eliopoulos
GD
.
Anemia of chronic disease in rheumatoid arthritis is associated with increased apoptosis of bone marrow erythroid cells: improvement following anti-tumor necrosis factor-alpha antibody therapy
.
Blood
.
2002
;
100
(
2
):
474
-
482
.
6.
Holbrook
J
,
Lara-Reyna
S
,
Jarosz-Griffiths
H
,
McDermott
MF
.
Tumour necrosis factor signalling in health and disease
.
F1000Res
.
2019
;
8
.
7.
Roodman
GD
,
Johnson
RA
,
Clibon
U
.
Tumor necrosis factor alpha and the anemia of chronic disease: effects of chronic exposure to TNF on erythropoiesis in vivo
.
Adv Exp Med Biol
.
1989
;
271
:
185
-
196
.
8.
Alvarez-Hernández
X
,
Licéaga
J
,
McKay
IC
,
Brock
JH
.
Induction of hypoferremia and modulation of macrophage iron metabolism by tumor necrosis factor
.
Lab Invest
.
1989
;
61
(
3
):
319
-
322
.
9.
Hodge-Dufour
J
,
Marino
MW
,
Horton
MR
, et al
.
Inhibition of interferon gamma induced interleukin 12 production: a potential mechanism for the anti-inflammatory activities of tumor necrosis factor
.
Proc Natl Acad Sci U S A
.
1998
;
95
(
23
):
13806
-
13811
.
10.
De Benedetti
F
,
Prencipe
G
,
Bracaglia
C
,
Marasco
E
,
Grom
AA
.
Targeting interferon-γ in hyperinflammation: opportunities and challenges
.
Nat Rev Rheumatol
.
2021
;
17
(
11
):
678
-
691
.
11.
Kak
G
,
Raza
M
,
Tiwari
BK
.
Interferon-gamma (IFN-γ): exploring its implications in infectious diseases
.
Biomol Concepts
.
2018
;
9
(
1
):
64
-
79
.
12.
Lee
SK
,
Silva
DG
,
Martin
JL
, et al
.
Interferon-γ excess leads to pathogenic accumulation of follicular helper T cells and germinal centers
.
Immunity
.
2012
;
37
(
5
):
880
-
892
.
13.
Vadhan-Raj
S
,
Al-Katib
A
,
Bhalla
R
, et al
.
Phase I trial of recombinant interferon gamma in cancer patients
.
J Clin Oncol
.
1986
;
4
(
2
):
137
-
146
.
14.
de Bruin
AM
,
Voermans
C
,
Nolte
MA
.
Impact of interferon-g on hematopoiesis
.
Blood
.
2014
;
124
(
16
):
2479
-
2486
.
15.
Raefsky
EL
,
Platanias
LC
,
Zoumbos
NC
,
Young
NS
.
Studies of interferon as a regulator of hematopoietic cell proliferation
.
J Immunol
.
1985
;
135
(
4
):
2507
-
2512
.
16.
Mullarky
IK
,
Szaba
FM
,
Kummer
LW
, et al
.
Gamma interferon suppresses erythropoiesis via interleukin-15
.
Infect Immun
.
2007
;
75
(
5
):
2630
-
2633
.
17.
Libregts
SF
,
Gutiérrez
L
,
de Bruin
AM
, et al
.
Chronic IFN-γ production in mice induces anemia by reducing erythrocyte life span and inhibiting erythropoiesis through an IRF-1/PU.1 axis
.
Blood
.
2011
;
118
(
9
):
2578
-
2588
.
18.
Johnson
CS
,
Pourbohloul
SC
,
Furmanski
P
.
Negative regulators of in vivo erythropoiesis: interaction of IL-1 alpha and TNF-alpha and the lack of a strict requirement for T or NK cells for their activity
.
Exp Hematol
.
1991
;
19
(
2
):
101
-
105
.
19.
Rusten
LS
,
Jacobsen
SE
.
Tumor necrosis factor (TNF)-alpha directly inhibits human erythropoiesis in vitro: role of p55 and p75 TNF receptors
.
Blood
.
1995
;
85
(
4
):
989
-
996
.
20.
Johnson
CS
,
Cook
CA
,
Furmanski
P
.
In vivo suppression of erythropoiesis by tumor necrosis factor-alpha (TNF-alpha): reversal with exogenous erythropoietin (EPO)
.
Exp Hematol
.
1990
;
18
(
2
):
109
-
113
.
21.
Morceau
F
,
Dicato
M
,
Diederich
M
.
Pro-inflammatory cytokine-mediated anemia: regarding molecular mechanisms of erythropoiesis
.
Mediators Inflamm
.
2009
;
2009
:
405016
.
22.
Felli
N
,
Pedini
F
,
Zeuner
A
, et al
.
Multiple members of the TNF superfamily contribute to IFN-gamma-mediated inhibition of erythropoiesis
.
J Immunol
.
2005
;
175
(
3
):
1464
-
1472
.
23.
Gardenghi
S
,
Renaud
TM
,
Meloni
A
, et al
.
Distinct roles for hepcidin and interleukin-6 in the recovery from anemia in mice injected with heat-killed Brucella abortus
.
Blood
.
2014
;
123
(
8
):
1137
-
1145
.
24.
Guerra
A
,
Oikonomidou
PR
,
Sinha
S
, et al
.
Lack of Gdf11 does not improve anemia or prevent the activity of RAP-536 in a mouse model of β-thalassemia
.
Blood
.
2019
;
134
(
6
):
568
-
572
.
25.
Parrow
NL
,
Li
Y
,
Feola
M
, et al
.
Lobe specificity of iron binding to transferrin modulates murine erythropoiesis and iron homeostasis
.
Blood
.
2019
;
134
(
17
):
1373
-
1384
.
26.
Dholakia
U
,
Bandyopadhyay
S
,
Hod
EA
,
Prestia
KA
.
Determination of RBC survival in C57BL/6 and C57BL/6-Tg(UBC–GFP) mice
.
Comp Med
.
2015
;
65
(
3
):
196
-
201
.
27.
Chen
K
,
Liu
J
,
Heck
S
,
Chasis
JA
,
An
X
,
Mohandas
N
.
Resolving the distinct stages in erythroid differentiation based on dynamic changes in membrane protein expression during erythropoiesis
.
Proc Natl Acad Sci U S A
.
2009
;
106
(
41
):
17413
-
17418
.
28.
Purton
LE
.
Adult murine hematopoietic stem cells and progenitors: an update on their identities, functions, and assays
.
Exp Hematol
.
2022
;
116
:
1
-
14
.
29.
Chappell
ME
,
Breda
L
,
Tricoli
L
, et al
.
Use of HSC-targeted LNP to generate a mouse model of lethal α-thalassemia and treatment via lentiviral gene therapy
.
Blood
.
2024
;
144
(
15
):
1633
-
1645
.
30.
Yamashita
M
,
Passegué
E
.
TNF-α coordinates hematopoietic stem cell survival and myeloid regeneration
.
Cell Stem Cell
.
2019
;
25
(
3
):
357
-
372.e7
.
31.
Ruan
B
,
Paulson
RF
.
Metabolic regulation of stress erythropoiesis, outstanding questions, and possible paradigms
.
Front Physiol
.
2022
;
13
:
1063294
.
32.
Paulson
RF
,
Hariharan
S
,
Little
JA
.
Stress erythropoiesis: definitions and models for its study
.
Exp Hematol
.
2020
;
89
:
43
-
54.e2
.
33.
Bennett
LF
,
Liao
C
,
Quickel
MD
, et al
.
Inflammation induces stress erythropoiesis through heme-dependent activation of SPI-C
.
Sci Signal
.
2019
;
12
(
598
):
eaap7336
.
34.
Salomon
BL
,
Leclerc
M
,
Tosello
J
,
Ronin
E
,
Piaggio
E
,
Cohen
JL
.
Tumor necrosis factor α and regulatory T cells in oncoimmunology
.
Front Immunol
.
2018
;
9
:
444
.
35.
Zheng
J
,
Umikawa
M
,
Zhang
S
, et al
.
Ex vivo expanded hematopoietic stem cells overcome the MHC barrier in allogeneic transplantation
.
Cell Stem Cell
.
2011
;
9
(
2
):
119
-
130
.
36.
Ma
X
.
TNF-α and IL-12:a balancing act in macrophage functioning
.
Microbes Infect
.
2001
;
3
(
2
):
121
-
129
.
37.
Masli
S
,
Turpie
B
.
Anti-inflammatory effects of tumour necrosis factor (TNF)-α are mediated via TNF-R2 (p75) in tolerogenic transforming growth factor-β-treated antigen-presenting cells
.
Immunology
.
2009
;
127
(
1
):
62
-
72
.
38.
Alam
Z
,
Devalaraja
S
,
Li
M
, et al
.
Counter regulation of spic by NF-κB and STAT signaling controls inflammation and iron metabolism in macrophages
.
Cell Rep
.
2020
;
31
(
13
):
107825
.
39.
Guerra
A
,
Parhiz
H
,
Rivella
S
.
Novel potential therapeutics to modify iron metabolism and red cell synthesis in diseases associated with defective erythropoiesis
.
Haematologica
.
2023
;
108
(
10
):
2582
-
2593
.
40.
Nemeth
E
,
Valore
EV
,
Territo
M
,
Schiller
G
,
Lichtenstein
A
,
Ganz
T
.
Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein
.
Blood
.
2003
;
101
(
7
):
2461
-
2463
.
41.
Zakharova
M
,
Ziegler
HK
.
Paradoxical anti-inflammatory actions of TNF-α: inhibition of IL-12 and IL-23 via TNF receptor 1 in macrophages and dendritic cells
.
J Immunol
.
2005
;
175
(
8
):
5024
-
5033
.
42.
Speiser
DE
,
Sebzda
E
,
Ohteki
T
, et al
.
Tumor necrosis factor receptor p55 mediates deletion of peripheral cytotoxic T lymphocytes in vivo
.
Eur J Immunol
.
1996
;
26
(
12
):
3055
-
3060
.
43.
Kanaly
ST
,
Nashleanas
M
,
Hondowicz
B
,
Scott
P
.
TNF receptor p55 is required for elimination of inflammatory cells following control of intracellular pathogens
.
J Immunol
.
1999
;
163
(
7
):
3883
-
3889
.
44.
Siegmund
D
,
Wajant
H
.
TNF and TNF receptors as therapeutic targets for rheumatic diseases and beyond
.
Nat Rev Rheumatol
.
2023
;
19
(
9
):
576
-
591
.
45.
Morales-Mantilla
DE
,
King
KY
.
The role of interferon-gamma in hematopoietic stem cell development, homeostasis, and disease
.
Curr Stem Cell Rep
.
2018
;
4
(
3
):
264
-
271
.
46.
Salomon
BL
.
Insights into the biology and therapeutic implications of TNF and regulatory T cells
.
Nat Rev Rheumatol
.
2021
;
17
(
8
):
487
-
504
.
You do not currently have access to this content.
Sign in via your Institution