• In aggressive CLLs, increased stability elevates LEF1 protein levels, which promote selective binding to cell cycle–related genes.

  • Lymph node–derived stimuli upregulate LEF1 protein levels and induce a shift toward short isoforms that promote CLL proliferation.

Abstract

The transcription factor lymphoid enhancer-binding factor 1 (LEF1) is aberrantly expressed across all subtypes and stages of chronic lymphocytic leukemia (CLL), yet the molecular mechanisms underlying its contribution to CLL pathogenesis remain poorly defined. Here, we conducted a comprehensive mechanistic dissection of LEF1 function in CLL using extensive functional analyses of patient-derived samples. We identified that, although LEF1 messenger RNA levels remain stable, patients with clinically aggressive disease show elevated LEF1 protein levels due to enhanced protein stability. LEF1 protein abundance is selectively modulated by lymph node–derived stimuli, including T-cell interactions and B-cell receptor signaling. Importantly, we uncovered a dual, context-dependent role for LEF1 that is determined by its protein levels. Low LEF1 protein, characteristic of indolent disease, supports B-cell activation, whereas increased protein abundance in aggressive disease promotes proliferation through the binding and induction of cell cycle and metabolic gene networks. We further showed that LEF1 exon 6 skipping is enriched in proliferative and aggressive CLL. Both in vitro and in vivo experiments revealed that LEF1-driven proliferation is mediated by these short, alternative spliced isoforms. Although all LEF1 isoforms bind to a core set of proliferation- and activation-related genes, they induce distinct transcriptional programs; full-length LEF1 promotes a quiescence gene signature and limits leukemic growth, whereas exon 6-skipping isoforms drive proliferation. Our findings establish LEF1 as an oncogenic transcription factor in CLL whose biological and clinical effects are modulated posttranscriptionally by both protein abundance and isoform composition.

1.
Kipps
TJ
,
Stevenson
FK
,
Wu
CJ
, et al
.
Chronic lymphocytic leukaemia
.
Nat Rev Dis Primers
.
2017
;
3
:
16096
.
2.
Hamblin
TJ
,
Davis
Z
,
Gardiner
A
,
Oscier
DG
,
Stevenson
FK
.
Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia
.
Blood
.
1999
;
94
(
6
):
1848
-
1854
.
3.
Damle
RN
,
Wasil
T
,
Fais
F
, et al
.
Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia
.
Blood
.
1999
;
94
(
6
):
1840
-
1847
.
4.
Knisbacher
BA
,
Lin
Z
,
Hahn
CK
, et al
.
Molecular map of chronic lymphocytic leukemia and its impact on outcome
.
Nat Genet
.
2022
;
54
(
11
):
1664
-
1674
.
5.
Nadeu
F
,
Diaz-Navarro
A
,
Delgado
J
,
Puente
XS
,
Campo
E
.
Genomic and epigenomic alterations in chronic lymphocytic leukemia
.
Annu Rev Pathol
.
2020
;
15
(
1
):
149
-
177
.
6.
Klein
U
,
Tu
Y
,
Stolovitzky
GA
, et al
.
Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells
.
J Exp Med
.
2001
;
194
(
11
):
1625
-
1638
.
7.
Lu
D
,
Zhao
Y
,
Tawatao
R
, et al
.
Activation of the Wnt signaling pathway in chronic lymphocytic leukemia
.
Proc Natl Acad Sci U S A
.
2004
;
101
(
9
):
3118
-
3123
.
8.
Gutierrez
A
,
Tschumper
RC
,
Wu
X
, et al
.
LEF-1 is a prosurvival factor in chronic lymphocytic leukemia and is expressed in the preleukemic state of monoclonal B-cell lymphocytosis
.
Blood
.
2010
;
116
(
16
):
2975
-
2983
.
9.
Navarro
A
,
Clot
G
,
Martínez-Trillos
A
, et al
.
Improved classification of leukemic B-cell lymphoproliferative disorders using a transcriptional and genetic classifier
.
Haematologica
.
2017
;
102
(
9
):
360
-
363
.
10.
Beekman
R
,
Chapaprieta
V
,
Russiñol
N
, et al
.
The reference epigenome and regulatory chromatin landscape of chronic lymphocytic leukemia
.
Nat Med
.
2018
;
24
(
6
):
868
-
880
.
11.
Pastore
A
,
Gaiti
F
,
Lu
SX
, et al
.
Corrupted coordination of epigenetic modifications leads to diverging chromatin states and transcriptional heterogeneity in CLL
.
Nat Commun
.
2019
;
10
(
1
):
1874
.
12.
Mallm
J
,
Iskar
M
,
Ishaque
N
, et al
.
Linking aberrant chromatin features in chronic lymphocytic leukemia to transcription factor networks
.
Mol Syst Biol
.
2019
;
15
(
5
):
e8339
.
13.
Clevers
H
.
Wnt/β-catenin signaling in development and disease
.
Cell
.
2006
;
127
(
3
):
469
-
480
.
14.
Arce
L
,
Yokoyama
NN
,
Waterman
ML
.
Diversity of LEF/TCF action in development and disease
.
Oncogene
.
2006
;
25
(
57
):
7492
-
7504
. 2006 25:57.
15.
Giese
K
,
Kingsley
C
,
Kirshner
JR
,
Grosschedl
R
.
Assembly and function of a TCR alpha enhancer complex is dependent on LEF-1-induced DNA bending and multiple protein-protein interactions
.
Genes Dev
.
1995
;
9
(
8
):
995
-
1008
.
16.
Yang
X
,
Liu
H
,
Ye
T
,
Ye
Z
.
High expression of LEF1 correlates with poor prognosis in solid tumors, but not blood tumors: a meta-analysis
.
Biosci Rep
.
2020
;
40
(
9
):
BSR20202520
.
17.
Xiao
L
,
Zhang
C
,
Li
X
, et al
.
LEF1 enhances the progression of colonic adenocarcinoma via remodeling the cell motility associated structures
.
Int J Mol Sci
.
2021
;
22
(
19
):
10870
.
18.
Nguyen
DX
,
Chiang
AC
,
Zhang
XHF
, et al
.
WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis
.
Cell
.
2009
;
138
(
1
):
51
-
62
.
19.
Hovanes
K
,
Li
TW
,
Munguia
JE
, et al
.
Beta-catenin-sensitive isoforms of lymphoid enhancer factor-1 are selectively expressed in colon cancer
.
Nat Genet
.
2001
;
28
(
1
):
53
-
57
.
20.
ten Hacken
E
,
Wu
CJ
.
Understanding CLL biology through mouse models of human genetics
.
Blood
.
2021
;
138
(
25
):
2621
-
2631
.
21.
Hoferkova
E
,
Kadakova
S
,
Mraz
M
.
In vitro and in vivo models of CLL–T cell interactions: implications for drug testing
.
Cancers (Basel)
.
2022
;
14
(
13
):
3087
.
22.
Mateos-Jaimez
J
,
Mangolini
M
,
Vidal
A
, et al
.
Robust CRISPR-Cas9 genetic editing of primary chronic lymphocytic leukemia and mantle cell lymphoma cells
.
Hemasphere
.
2023
;
7
(
6
):
e909
.
23.
Mangolini
M
,
Maiques-Diaz
A
,
Charalampopoulou
S
, et al
.
Viral transduction of primary human lymphoma B cells reveals mechanisms of NOTCH-mediated immune escape
.
Nat Commun
.
2022
;
13
(
1
):
6220
.
24.
Puente
XS
,
Beà
S
,
Valdés-Mas
R
, et al
.
Non-coding recurrent mutations in chronic lymphocytic leukaemia
.
Nature
.
2015
;
526
(
7574
):
519
-
524
.
25.
Eagle
GL
,
Zhuang
J
,
Jenkins
RE
, et al
.
Total proteome analysis identifies migration defects as a major pathogenetic factor in immunoglobulin heavy chain variable region (IGHV)-unmutated chronic lymphocytic leukemia
.
Mol Cell Proteomics
.
2015
;
14
(
4
):
933
-
945
.
26.
Chapaprieta
V
,
Maiques-Diaz
A
,
Nadeu
F
, et al
.
Dual biological role and clinical impact of de novo chromatin activation in chronic lymphocytic leukemia
.
Blood
.
2025
;
145
(
21
):
2473
-
2487
.
27.
Herndon
TM
,
Chen
SS
,
Saba
NS
, et al
.
Direct in vivo evidence for increased proliferation of CLL cells in lymph nodes compared to bone marrow and peripheral blood
.
Leukemia
.
2017
;
31
(
6
):
1340
-
1347
.
28.
Haselager
MV
,
Kater
AP
,
Eldering
E
.
Proliferative signals in chronic lymphocytic leukemia; what are we missing?
.
Front Oncol
.
2020
;
10
:
592205
.
29.
Pasikowska
M
,
Walsby
E
,
Apollonio
B
, et al
.
Phenotype and immune function of lymph node and peripheral blood CLL cells are linked to transendothelial migration
.
Blood
.
2016
;
128
(
4
):
563
-
573
.
30.
Herishanu
Y
,
Pérez-Galán
P
,
Liu
D
, et al
.
The lymph node microenvironment promotes B-cell receptor signaling, NF-κB activation, and tumor proliferation in chronic lymphocytic leukemia
.
Blood
.
2011
;
117
(
2
):
563
-
574
.
31.
Saba
NS
,
Liu
D
,
Herman
SEM
, et al
.
Pathogenic role of B-cell receptor signaling and canonical NF-κB activation in mantle cell lymphoma
.
Blood
.
2016
;
128
(
1
):
82
-
92
.
32.
Mongini
PKA
,
Gupta
R
,
Boyle
E
, et al
.
TLR-9 and IL-15 synergy promotes the in vitro clonal expansion of chronic lymphocytic leukemia B cells
.
J Immunol
.
2015
;
195
(
3
):
901
-
923
.
33.
Hao
YH
,
Lafita-Navarro
MC
,
Zacharias
L
, et al
.
Induction of LEF1 by MYC activates the WNT pathway and maintains cell proliferation
.
Cell Commun Signal
.
2019
;
17
(
1
):
129
.
34.
Yeomans
A
,
Thirdborough
SM
,
Valle-Argos
B
, et al
.
Engagement of the B-cell receptor of chronic lymphocytic leukemia cells drives global and MYC-specific mRNA translation
.
Blood
.
2016
;
127
(
4
):
449
-
457
.
35.
Zhang
W
,
Kater
AP
,
Widhopf
GF
, et al
.
B-cell activating factor and v-Myc myelocytomatosis viral oncogene homolog (c-Myc) influence progression of chronic lymphocytic leukemia
.
PNAS USA
.
2010
;
107
(
44
):
18956
-
18960
.
36.
Skene
PJ
,
Henikoff
JG
,
Henikoff
S
.
Targeted in situ genome-wide profiling with high efficiency for low cell numbers
.
Nat Protoc
.
2018
;
13
(
5
):
1006
-
1019
.
37.
Reya
T
,
O’Riordan
M
,
Okamura
R
, et al
.
Wnt signaling regulates B lymphocyte proliferation through a LEF-1 dependent mechanism
.
Immunity
.
2000
;
13
(
1
):
15
-
24
.
38.
Steinke
FC
,
Xue
HH
.
From inception to output, Tcf1 and Lef1 safeguard development of T cells and innate immune cells
.
Immunol Res
.
2014
;
59
(
1-3
):
45
-
55
.
39.
Lambert
SA
,
Jolma
A
,
Campitelli
LF
, et al
.
The human transcription factors
.
Cell
.
2018
;
172
(
4
):
650
-
665
.
40.
Weirauch
MT
,
Yang
A
,
Albu
M
, et al
.
Determination and inference of eukaryotic transcription factor sequence specificity
.
Cell
.
2014
;
158
(
6
):
1431
-
1443
.
41.
Vaquerizas
JM
,
Kummerfeld
SK
,
Teichmann
SA
,
Luscombe
NM
.
A census of human transcription factors: function, expression and evolution
.
Nat Rev Genet
.
2009
;
10
(
4
):
252
-
263
.
42.
Wingender
E
,
Schoeps
T
,
Haubrock
M
,
Dönitz
J
.
TFClass: a classification of human transcription factors and their rodent orthologs
.
Nucleic Acids Res
.
2015
;
43
(
database issue
):
D97
-
D102
.
43.
Ajuh
P
,
Kuster
B
,
Panov
K
,
Zomerdijk
JC
,
Mann
M
,
Lamond
AI
.
Functional analysis of the human CDC5L complex and identification of its components by mass spectrometry
.
EMBO J
.
2000
;
19
(
23
):
6569
-
6581
.
44.
Grote
M
,
Wolf
E
,
Will
CL
, et al
.
Molecular architecture of the human Prp19/CDC5L complex
.
Mol Cell Biol
.
2010
;
30
(
9
):
2105
-
2119
.
45.
Qiu
H
,
Zhang
X
,
Ni
W
, et al
.
Expression and clinical role of Cdc5L as a novel cell cycle protein in hepatocellular carcinoma
.
Dig Dis Sci
.
2016
;
61
(
3
):
795
-
805
.
46.
Mu
R
,
Wang
YB
,
Wu
M
, et al
.
Depletion of pre-mRNA splicing factor Cdc5L inhibits mitotic progression and triggers mitotic catastrophe
.
Cell Death Dis
.
2014
;
5
(
3
):
e1151
.
47.
Herbst
SA
,
Vesterlund
M
,
Helmboldt
AJ
, et al
.
Proteogenomics refines the molecular classification of chronic lymphocytic leukemia
.
Nat Commun
.
2022
;
13
(
1
):
6226
.
48.
Carlsson
P
,
Waterman
ML
,
Jones
KA
.
The hLEF/TCF-1 alpha HMG protein contains a context-dependent transcriptional activation domain that induces the TCR alpha enhancer in T cells
.
Genes Dev
.
1993
;
7
(
12a
):
2418
-
2430
.
49.
Wang
SH
,
Nan
KJ
,
Wang
YC
,
Wang
WJ
,
Tian
T
.
The balance between two isoforms of LEF-1 regulates colon carcinoma growth
.
BMC Gastroenterol
.
2012
;
12
:
53
.
50.
Jesse
S
,
Koenig
A
,
Ellenrieder
V
,
Menke
A
.
Lef-1 isoforms regulate different target genes and reduce cellular adhesion
.
Int J Cancer
.
2010
;
126
(
5
):
1109
-
1120
.
51.
García-Corzo
L
,
Calatayud-Baselga
I
,
Casares-Crespo
L
, et al
.
The transcription factor LEF1 interacts with NFIX and switches isoforms during adult hippocampal neural stem cell quiescence
.
Front Cell Dev Biol
.
2022
;
10
:
912319
.
52.
Mallory
MJ
,
Jackson
J
,
Weber
B
,
Chi
A
,
Heyd
F
,
Lynch
KW
.
Signal- and development-dependent alternative splicing of LEF1 in T cells is controlled by CELF2
.
Mol Cell Biol
.
2011
;
31
(
11
):
2184
-
2195
.
53.
Nagalski
A
,
Irimia
M
,
Szewczyk
L
, et al
.
Postnatal isoform switch and protein localization of LEF1 and TCF7L2 transcription factors in cortical, thalamic, and mesencephalic regions of the adult mouse brain
.
Brain Struct Funct
.
2013
;
218
(
6
):
1531
-
1549
.
54.
Ajith
S
,
Gazzara
MR
,
Cole
BS
, et al
.
Position-dependent activity of CELF2 in the regulation of splicing and implications for signal-responsive regulation in T cells
.
RNA Biol
.
2016
;
13
(
6
):
569
-
581
.
55.
Vitting-Seerup
K
,
Sandelin
A
.
The landscape of isoform switches in human cancers
.
Mol Cancer Res
.
2017
;
15
(
9
):
1206
-
1220
.
56.
Gelebart
P
,
Eriksen Gjerstad
M
,
Benjaminsen
S
, et al
.
Inhibition of a new AXL isoform, AXL3, induces apoptosis of mantle cell lymphoma cells
.
Blood
.
2023
;
142
(
17
):
1478
-
1493
.
57.
Bruhn
L
,
Munnerlyn
A
,
Grosschedl
R
.
ALY, a context-dependent coactivator of LEF-1 and AML-1, is required for TCRalpha enhancer function
.
Genes Dev
.
1997
;
11
(
5
):
640
-
653
.
58.
Ghogomu
SM
,
van Venrooy
S
,
Ritthaler
M
,
Wedlich
D
,
Gradl
D
.
HIC-5 is a novel repressor of lymphoid enhancer factor/T-cell factor-driven transcription
.
J Biol Chem
.
2006
;
281
(
3
):
1755
-
1764
.
59.
Massagué
J
,
Sheppard
D
.
TGF-β signaling in health and disease
.
Cell
.
2023
;
186
(
19
):
4007
-
4037
.
60.
Shao
J
,
Yan
Y
,
Ding
D
, et al
.
Destruction of DNA-binding proteins by programmable oligonucleotide PROTAC (O’PROTAC): effective targeting of LEF1 and ERG
.
Adv Sci
.
2021
;
8
(
20
):
e2102555
.
You do not currently have access to this content.
Sign in via your Institution