• A novel PLK4/PRMT5/EZH2/H3K27me3 axis was demonstrated upon PLK4 inhibition in both TP53 wild-type and mutated AML.

  • PLK4 inhibition activated the cGAS-STING pathway in TP53-mutated AML.

Acute myeloid leukemia (AML) with TP53 mutation is one of the most lethal cancers and portends an extremely poor prognosis. Based on in silico analyses of druggable genes and differential gene expression in TP53-mutated AML, we identified pololike kinase 4 (PLK4) as a novel therapeutic target and examined its expression, regulation, pathogenetic mechanisms, and therapeutic potential in TP53-mutated AML. PLK4 expression was suppressed by activated p53 signaling in TP53 wild-type AML and was increased in TP53-mutated AML cell lines and primary samples. Short-term PLK4 inhibition induced DNA damage and apoptosis in TP53 wild-type AML. Prolonged PLK4 inhibition suppressed the growth of TP53-mutated AML and was associated with DNA damage, apoptosis, senescence, polyploidy, and defective cytokinesis. A hitherto undescribed PLK4/PRMT5/EZH2/H3K27me3 axis was demonstrated in both TP53 wild-type and mutated AML, resulting in histone modification through PLK4-induced PRMT5 phosphorylation. In TP53-mutated AML, combined effects of histone modification and polyploidy activated the cGAS-STING pathway, leading to secretion of cytokines and chemokines and activation of macrophages and T cells upon coculture with AML cells. In vivo, PLK4 inhibition also induced cytokine and chemokine expression in mouse recipients, and its combination with anti-CD47 antibody, which inhibited the “don’t-eat-me” signal in macrophages, synergistically reduced leukemic burden and prolonged animal survival. The study shed important light on the pathogenetic role of PLK4 and might lead to novel therapeutic strategies in TP53-mutated AML.

1.
Leung
GMK
,
Zhang
C
,
Ng
NKL
, et al
.
Distinct mutation spectrum, clinical outcome and therapeutic responses of typical complex/monosomy karyotype acute myeloid leukemia carrying TP53 mutations
.
Am J Hematol
.
2019
;
94
(
6
):
650
-
657
.
2.
Daver
NG
,
Maiti
A
,
Kadia
TM
, et al
.
TP53-mutated myelodysplastic syndrome and acute myeloid leukemia: biology, current therapy, and future directions
.
Cancer Discov
.
2022
;
12
(
11
):
2516
-
2529
.
3.
Welch
JS
,
Petti
AA
,
Miller
CA
, et al
.
TP53 and decitabine in acute myeloid leukemia and myelodysplastic syndromes
.
N Engl J Med
.
2016
;
375
(
21
):
2023
-
2036
.
4.
Sallman
DA
,
DeZern
AE
,
Garcia-Manero
G
, et al
.
Eprenetapopt (APR-246) and azacitidine in TP53-mutant myelodysplastic syndromes
.
J Clin Oncol
.
2021
;
39
(
14
):
1584
-
1594
.
5.
Sallman
DA
,
Al Malki
M
,
Asch
AS
, et al
.
Tolerability and efficacy of the first-in-class anti-CD47 antibody magrolimab combined with azacitidine in MDS and AML patients: Phase Ib results
.
J Clin Oncol
.
2020
;
38
(
15_suppl
):
7507
.
6.
Zitouni
S
,
Nabais
C
,
Jana
SC
,
Guerrero
A
,
Bettencourt-Dias
M
.
Polo-like kinases: structural variations lead to multiple functions
.
Nat Rev Mol Cell Biol
.
2014
;
15
(
7
):
433
-
452
.
7.
Press
MF
,
Xie
B
,
Davenport
S
, et al
.
Role for polo-like kinase 4 in mediation of cytokinesis
.
Proc Natl Acad Sci U S A
.
2019
;
116
(
23
):
11309
-
11318
.
8.
Puklowski
A
,
Homsi
Y
,
Keller
D
, et al
.
The SCF-FBXW5 E3-ubiquitin ligase is regulated by PLK4 and targets HsSAS-6 to control centrosome duplication
.
Nat Cell Biol
.
2011
;
13
(
8
):
1004
-
1009
.
9.
Ohta
M
,
Ashikawa
T
,
Nozaki
Y
, et al
.
Direct interaction of Plk4 with STIL ensures formation of a single procentriole per parental centriole
.
Nat Commun
.
2014
;
5
:
5267
.
10.
Lingle
WL
,
Barrett
SL
,
Negron
VC
, et al
.
Centrosome amplification drives chromosomal instability in breast tumor development
.
Proc Natl Acad Sci U S A
.
2002
;
99
(
4
):
1978
-
1983
.
11.
Tian
X
,
Zhou
D
,
Chen
L
, et al
.
Polo-like kinase 4 mediates epithelial-mesenchymal transition in neuroblastoma via PI3K/Akt signaling pathway
.
Cell Death Dis
.
2018
;
9
(
2
):
54
.
12.
Zhang
Z
,
Wang
Z
,
Huang
K
, et al
.
PLK4 is a determinant of temozolomide sensitivity through phosphorylation of IKBKE in glioblastoma
.
Cancer Lett
.
2019
;
443
:
91
-
107
.
13.
Bao
J
,
Yu
Y
,
Chen
J
, et al
.
MiR-126 negatively regulates PLK-4 to impact the development of hepatocellular carcinoma via ATR/CHEK1 pathway
.
Cell Death Dis
.
2018
;
9
(
10
):
1045
.
14.
Li
J
,
Tan
M
,
Li
L
,
Pamarthy
D
,
Lawrence
TS
,
Sun
Y
.
SAK, a new polo-like kinase, is transcriptionally repressed by p53 and induces apoptosis upon RNAi silencing
.
Neoplasia
.
2005
;
7
(
4
):
312
-
323
.
15.
Ward
A
,
Hudson
JW
.
p53-Dependent and cell specific epigenetic regulation of the polo-like kinases under oxidative stress
.
PLoS One
.
2014
;
9
(
1
):
e87918
.
16.
Serçin
Ö
,
Larsimont
JC
,
Karambelas
AE
, et al
.
Transient PLK4 overexpression accelerates tumorigenesis in p53-deficient epidermis
.
Nat Cell Biol
.
2016
;
18
(
1
):
100
-
110
.
17.
Meek
DW
.
The role of p53 in the response to mitotic spindle damage
.
Pathol Biol (Paris)
.
2000
;
48
(
3
):
246
-
254
.
18.
Webster
ALH
,
Sanders
MA
,
Patel
K
, et al
.
Genomic signature of Fanconi anaemia DNA repair pathway deficiency in cancer
.
Nature
.
2022
;
612
(
7940
):
495
-
502
.
19.
Frankish
A
,
Diekhans
M
,
Jungreis
I
, et al
.
GENCODE 2021
.
Nucleic Acids Res
.
2021
;
49
(
D1
):
D916
-
d923
.
20.
Wu
T
,
Liu
W
,
Huang
S
, et al
.
clusterProfiler 4.0: A universal enrichment tool for interpreting omics data
.
Innovation (Camb)
.
2021
;
12
(
3
):
100141
.
21.
Man
CH
,
Mercier
FE
,
Liu
N
, et al
.
Proton export alkalinizes intracellular pH and reprograms carbon metabolism to drive normal and malignant cell growth
.
Blood
.
2022
;
139
(
4
):
502
-
522
.
22.
Zhao
Y
,
Yang
J
,
Liu
J
, et al
.
Inhibition of Polo-like kinase 4 induces mitotic defects and DNA damage in diffuse large B-cell lymphoma
.
Cell Death Dis
.
2021
;
12
(
7
):
640
.
23.
Kojima
K
,
Konopleva
M
,
Samudio
IJ
, et al
.
MDM2 antagonists induce p53-dependent apoptosis in AML: implications for leukemia therapy
.
Blood
.
2005
;
106
(
9
):
3150
-
3159
.
24.
Liu
F
,
Xu
Y
,
Lu
X
, et al
.
PRMT5-mediated histone arginine methylation antagonizes transcriptional repression by polycomb complex PRC2
.
Nucleic Acids Res
.
2020
;
48
(
6
):
2956
-
2968
.
25.
Li
Z
,
Xu
J
,
Song
Y
, et al
.
PRMT5 Prevents dilated cardiomyopathy via suppression of protein O-GlcNAcylation
.
Circ Res
.
2021
;
129
(
9
):
857
-
871
.
26.
Chu
CS
,
Lo
PW
,
Yeh
YH
, et al
.
O-GlcNAcylation regulates EZH2 protein stability and function
.
Proc Natl Acad Sci U S A
.
2014
;
111
(
4
):
1355
-
1360
.
27.
Aarreberg
LD
,
Esser-Nobis
K
,
Driscoll
C
,
Shuvarikov
A
,
Roby
JA
,
Gale
M
.
Interleukin-1beta induces mtDNA release to activate innate immune signaling via cGAS-STING
.
Mol Cell
.
2019
;
74
(
4
):
801
-
815.e6
.
28.
Chan
CY
,
Yuen
VW
,
Chiu
DK
, et al
.
Polo-like kinase 4 inhibitor CFI-400945 suppresses liver cancer through cell cycle perturbation and eliciting antitumor immunity
.
Hepatology
.
2023
;
77
(
3
):
729
-
744
.
29.
Li
T
,
Chen
ZJ
.
The cGAS-cGAMP-STING pathway connects DNA damage to inflammation, senescence, and cancer
.
J Exp Med
.
2018
;
215
(
5
):
1287
-
1299
.
30.
Dou
Z
,
Ghosh
K
,
Vizioli
MG
, et al
.
Cytoplasmic chromatin triggers inflammation in senescence and cancer
.
Nature
.
2017
;
550
(
7676
):
402
-
406
.
31.
Gu
X
,
Guan
J
,
Xu
J
, et al
.
Model based on five tumour immune microenvironment-related genes for predicting hepatocellular carcinoma immunotherapy outcomes
.
J Transl Med
.
2021
;
19
(
1
):
26
.
32.
Jiang
Y
,
Ji
Q
,
Long
X
, et al
.
CLCF1 Is a novel potential immune-related target with predictive value for prognosis and immunotherapy response in glioma
.
Front Immunol
.
2022
;
13
:
810832
.
33.
Tamura
M
,
Yonezawa
T
,
Liu
X
, et al
.
Opposing effects of acute versus chronic inhibition of p53 on decitabine's efficacy in myeloid neoplasms
.
Sci Rep
.
2019
;
9
(
1
):
8171
.
34.
Kawakami
M
,
Mustachio
LM
,
Zheng
L
, et al
.
Polo-like kinase 4 inhibition produces polyploidy and apoptotic death of lung cancers
.
Proc Natl Acad Sci U S A
.
2018
;
115
(
8
):
1913
-
1918
.
35.
Singh
CK
,
Denu
RA
,
Nihal
M
, et al
.
PLK4 is upregulated in prostate cancer and its inhibition reduces centrosome amplification and causes senescence
.
Prostate
.
2022
;
82
(
9
):
957
-
969
.
36.
Deng
S
,
Lu
X
,
Zhang
Z
,
Meng
R
,
Li
M
,
Xia
S
.
Identification and assessment of PLK1/2/3/4 in lung adenocarcinoma and lung squamous cell carcinoma: Evidence from methylation profile
.
J Cell Mol Med
.
2021
;
25
(
14
):
6652
-
6663
.
37.
Oegema
K
,
Davis
RL
,
Lara-Gonzalez
P
,
Desai
A
,
Shiau
AK
.
CFI-400945 is not a selective cellular PLK4 inhibitor
.
Proc Natl Acad Sci U S A
.
2018
;
115
(
46
):
E10808
-
e10809
.
38.
Sampson
PB
,
Liu
Y
,
Forrest
B
, et al
.
The discovery of Polo-like kinase 4 inhibitors: identification of (1R,2S).2-(3-((E).4-(((cis).2,6-dimethylmorpholino)methyl)styryl). 1H.indazol-6-yl)-5'-methoxyspiro[cyclopropane-1,3'-indolin]-2'-one (CFI-400945) as a potent, orally active antitumor agent
.
J Med Chem
.
2015
;
58
(
1
):
147
-
169
.
39.
Massett
ME
,
Monaghan
L
,
Patterson
S
, et al
.
A KDM4A-PAF1-mediated epigenomic network is essential for acute myeloid leukemia cell self-renewal and survival
.
Cell Death Dis
.
2021
;
12
(
6
):
573
.
40.
Yang
L
,
Ma
DW
,
Cao
YP
, et al
.
PRMT5 functionally associates with EZH2 to promote colorectal cancer progression through epigenetically repressing CDKN2B expression
.
Theranostics
.
2021
;
11
(
8
):
3742
-
3759
.
41.
Gollner
S
,
Oellerich
T
,
Agrawal-Singh
S
, et al
.
Loss of the histone methyltransferase EZH2 induces resistance to multiple drugs in acute myeloid leukemia
.
Nat Med
.
2017
;
23
(
1
):
69
-
78
.
42.
Rath
BH
,
Waung
I
,
Camphausen
K
,
Tofilon
PJ
.
Inhibition of the histone H3K27 demethylase UTX enhances tumor cell radiosensitivity
.
Mol Cancer Ther
.
2018
;
17
(
5
):
1070
-
1078
.
43.
Zeidler
M
,
Varambally
S
,
Cao
Q
, et al
.
The polycomb group protein EZH2 impairs DNA repair in breast epithelial cells
.
Neoplasia
.
2005
;
7
(
11
):
1011
-
1019
.
44.
Li
Y
,
Zhang
M
,
Sheng
M
, et al
.
Therapeutic potential of GSK-J4, a histone demethylase KDM6B/JMJD3 inhibitor, for acute myeloid leukemia
.
J Cancer Res Clin Oncol
.
2018
;
144
(
6
):
1065
-
1077
.
45.
Ma
D
,
Yang
M
,
Wang
Q
, et al
.
Arginine methyltransferase PRMT5 negatively regulates cGAS-mediated antiviral immune response
.
Sci Adv
.
2021
;
7
(
13
):
eabc1834
.
46.
Kim
H
,
Kim
H
,
Feng
Y
, et al
.
PRMT5 control of cGAS/STING and NLRC5 pathways defines melanoma response to antitumor immunity
.
Sci Transl Med
.
2020
;
12
(
551
):
eaaz5683
.
47.
Lehmann
BD
,
Paine
MS
,
Brooks
AM
, et al
.
Senescence-associated exosome release from human prostate cancer cells
.
Cancer Res
.
2008
;
68
(
19
):
7864
-
7871
.
48.
Yokoi
A
,
Villar-Prados
A
,
Oliphint
PA
, et al
.
Mechanisms of nuclear content loading to exosomes
.
Sci Adv
.
2019
;
5
(
11
):
eaax8849
.
49.
Han
C
,
Godfrey
V
,
Liu
Z
, et al
.
The AIM2 and NLRP3 inflammasomes trigger IL-1-mediated antitumor effects during radiation
.
Sci Immunol
.
2021
;
6
(
59
):
eabc6998
.
50.
Bromley
SK
,
Mempel
TR
,
Luster
AD
.
Orchestrating the orchestrators: chemokines in control of T cell traffic
.
Nat Immunol
.
2008
;
9
(
9
):
970
-
980
.
51.
Yoshimura
T
.
The chemokine MCP-1 (CCL2) in the host interaction with cancer: a foe or ally?
.
Cell Mol Immunol
.
2018
;
15
(
4
):
335
-
345
.
52.
Jin
J
,
Lin
J
,
Xu
A
, et al
.
CCL2: An important mediator between tumor cells and host cells in tumor microenvironment
.
Front Oncol
.
2021
;
11
:
722916
.
53.
Dehmani
S
,
Nerrière-Daguin
V
,
Néel
M
, et al
.
SIRPγ-CD47 interaction positively regulates the activation of human T cells in situation of chronic stimulation
.
Front Immunol
.
2021
;
12
:
732530
.
54.
Daver
NG
,
Vyas
P
,
Kambhampati
S
, et al
.
Tolerability and efficacy of the first-in-class anti-CD47 antibody magrolimab combined with azacitidine in frontline TP53m AML patients: Phase 1b results
.
J Clin Oncol
.
2022
;
40
(
16_suppl
):
7020
.
You do not currently have access to this content.
Sign in via your Institution