Abstract

Advancements in the conceptual thinking of hemostasis and thrombosis have been catalyzed by major developments within health research over several decades. The cascade model of coagulation was first described in the 1960s, when biochemistry gained prominence through innovative experimentation and technical developments. This was followed by the cell-based model, which integrated cellular coordination to the enzymology of clot formation and was conceptualized during the growth period in cell biology at the turn of the millennium. Each step forward has heralded a revolution in clinical therapeutics, both in procoagulant and anticoagulant treatments to improve patient care. In current times, the COVID-19 pandemic may also prove to be a catalyst: thrombotic challenges including the mixed responses to anticoagulant treatment and the vaccine-induced immune thrombotic thrombocytopenia have exposed limitations in our preexisting concepts while simultaneously demanding novel therapeutic approaches. It is increasingly clear that innate immune activation as part of the host response to injury is not separate but integrated into adaptive clot formation. Our review summarizes current understanding of the major molecules facilitating such a cross talk between immunity, inflammation and coagulation. We demonstrate how such effects can be layered upon the cascade and cell-based models to evolve conceptual understanding of the physiology of immunohemostasis and the pathology of immunothrombosis.

1.
Macfarlane
RG
.
An enzyme cascade in the blood clotting mechanism, and its function as a biochemical amplifier
.
Nature
.
1964
;
202
(
4931
):
498
-
499
.
2.
Hoffman
M
.
A cell-based model of coagulation and the role of factor VIIa
.
Blood Rev
.
2003
;
17
(
suppl 1
):
S1
-
5
.
3.
Granger
CB
,
Alexander
JH
,
McMurray
JJ
, et al
.
Apixaban versus warfarin in patients with atrial fibrillation
.
N Engl J Med
.
2011
;
365
(
11
):
981
-
992
.
4.
Peters
R
,
Harris
T
.
Advances and innovations in haemophilia treatment
.
Nat Rev Drug Discov
.
2018
;
17
(
7
):
493
-
508
.
5.
Connolly
SJ
,
Ezekowitz
MD
,
Yusuf
S
, et al
.
Dabigatran versus warfarin in patients with atrial fibrillation
.
N Engl J Med
.
2009
;
361
(
12
):
1139
-
1151
.
6.
Davie
EW
.
A brief historical review of the waterfall/cascade of blood coagulation
.
J Biol Chem
.
2003
;
278
(
51
):
50819
-
50832
.
7.
Macfarlane
RG A
.
The blood clotting mechanism. The development of a theory of blood coagulation
.
Proc R Soc Lond B Biol Sci
.
1969
;
173
(
1032
):
261
-
268
.
8.
Doolittle
RF
.
Some important milestones in the field of blood clotting
.
J Innate Immun
.
2016
;
8
(
1
):
23
-
29
.
9.
Fujikawa
K
,
Coan
MH
,
Legaz
ME
,
Davie
EW
.
The mechanism of activation of bovine factor X (Stuart factor) by intrinsic and extrinsic pathways
.
Biochemistry
.
1974
;
13
(
26
):
5290
-
5299
.
10.
Osterud
B
,
Rapaport
SI
.
Synthesis of intrinsic factor X activator. Inhibition of the function of formed activator by antibodies to factor VIII and to factor IX
.
Biochemistry
.
1970
;
9
(
8
):
1854
-
1861
.
11.
Schramm
W
.
The history of haemophilia - a short review
.
Thromb Res
.
2014
;
134
(
suppl 1
):
S4
-
9
.
12.
Pirmohamed
M
.
Warfarin: almost 60 years old and still causing problems
.
Br J Clin Pharmacol
.
2006
;
62
(
5
):
509
-
511
.
13.
Barrowcliffe
TW
. History of Heparin. In:
Lever
R
,
Mulloy
B
,
Page
CP
, eds.
Heparin - A Century of Progress
.
Springer Berlin Heidelberg
;
2012
:
3
-
22
.
14.
Zwaal
RF
,
Comfurius
P
,
Bevers
EM
.
Lipid-protein interactions in blood coagulation
.
Biochim Biophys Acta
.
1998
;
1376
(
3
):
433
-
453
.
15.
Hoffman
MM
,
Monroe
DM
.
Rethinking the coagulation cascade
.
Curr Hematol Rep
.
2005
;
4
(
5
):
391
-
396
.
16.
Giles
AR
,
Mann
KG
,
Nesheim
ME
.
A combination of factor Xa and phosphatidylcholine-phosphatidylserine vesicles bypasses factor VIII in vivo
.
Br J Haematol
.
1988
;
69
(
4
):
491
-
497
.
17.
Hoffman
M
,
Monroe
DM
,
Roberts
HR
.
Activated factor VII activates factors IX and X on the surface of activated platelets: thoughts on the mechanism of action of high-dose activated factor VII
.
Blood Coagul Fibrinolysis
.
1998
;
9
(
suppl 1
):
S61
-
65
.
18.
Kane
WH
,
Davie
EW
.
Blood-coagulation factor-v and factor-Viii - structural and functional similarities and their relationship to hemorrhagic and thrombotic disorders
.
Blood
.
1988
;
71
(
3
):
539
-
555
.
19.
Kalafatis
M
,
Swords
NA
,
Rand
MD
,
Mann
KG
.
Membrane-dependent reactions in blood coagulation: role of the vitamin K-dependent enzyme complexes
.
Biochim Biophys Acta
.
1994
;
1227
(
3
):
113
-
129
.
20.
Abid Hussein
MN
,
Böing
AN
,
Biró
E
, et al
.
Phospholipid composition of in vitro endothelial microparticles and their in vivo thrombogenic properties
.
Thromb Res
.
2008
;
121
(
6
):
865
-
871
.
21.
van Dam
LF
,
Kroft
LJM
,
van der Wal
LI
, et al
.
Clinical and computed tomography characteristics of COVID-19 associated acute pulmonary embolism: A different phenotype of thrombotic disease?
.
Thromb Res
.
2020
;
193
:
86
-
89
.
22.
Oxley
TJ
,
Mocco
J
,
Majidi
S
, et al
.
Large-vessel stroke as a presenting feature of COVID-19 in the young
.
N Engl J Med
.
2020
;
382
(
20
):
e60
.
23.
REMAP-CAP Investigators; ACTIV-4a Investigators; ATTACC Investigators, et al
.
Therapeutic anticoagulation with heparin in critically Ill patients with COVID-19
.
N Engl J Med
.
2021
;
385
(
9
):
777
-
789
.
24.
Gomez
K
,
Laffan
M
,
Bradbury
C
.
Debate: Should the dose or duration of anticoagulants for the prevention of venous thrombosis be increased in patients with COVID-19 while we are awaiting the results of clinical trials?
.
Br J Haematol
.
2021
;
192
(
3
):
459
-
466
.
25.
Obi
AT
,
Tignanelli
CJ
,
Jacobs
BN
, et al
.
Empirical systemic anticoagulation is associated with decreased venous thromboembolism in critically ill influenza A H1N1 acute respiratory distress syndrome patients
.
J Vasc Surg Venous Lymphat Disord
.
2019
;
7
(
3
):
317
-
324
.
26.
Tang
N
,
Bai
H
,
Chen
X
,
Gong
J
,
Li
D
,
Sun
Z
.
Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy
.
J Thromb Haemost
.
2020
;
18
(
5
):
1094
-
1099
.
27.
ATTACC Investigators; ACTIV-4a Investigators; REMAP-CAP Investigators, et al
.
Therapeutic anticoagulation with heparin in noncritically Ill patients with COVID-19
.
N Engl J Med
.
2021
;
385
(
9
):
790
-
802
.
28.
Berger
JS
,
Kornblith
LZ
,
Gong
MN
, et al
.
Effect of P2Y12 inhibitors on survival free of organ support among non-critically Ill hospitalized patients with COVID-19: a randomized clinical trial
.
JAMA
.
2022
;
327
(
3
):
227
-
236
.
29.
Wada
H
,
Hatada
T
,
Okamoto
K
, et al
.
Modified non-overt DIC diagnostic criteria predict the early phase of overt-DIC
.
Am J Hematol
.
2010
;
85
(
9
):
691
-
694
.
30.
Engelmann
B
,
Massberg
S
.
Thrombosis as an intravascular effector of innate immunity
.
Nat Rev Immunol
.
2013
;
13
(
1
):
34
-
45
.
31.
Stark
K
,
Massberg
S
.
Interplay between inflammation and thrombosis in cardiovascular pathology
.
Nat Rev Cardiol
.
2021
;
18
(
9
):
666
-
682
.
32.
Bonaventura
A
,
Vecchié
A
,
Dagna
L
, et al
.
Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19
.
Nat Rev Immunol
.
2021
;
21
(
5
):
319
-
329
.
33.
Ito
T
.
PAMPs and DAMPs as triggers for DIC
.
J Intensive Care
.
2014
;
2
(
1
):
67
.
34.
Ryan
TAJ
,
O'Neill
LAJ
.
Innate immune signaling and immunothrombosis: new insights and therapeutic opportunities
.
Eur J Immunol
.
2022
;
52
(
7
):
1024
-
1034
.
35.
Fuchs
TA
,
Brill
A
,
Duerschmied
D
, et al
.
Extracellular DNA traps promote thrombosis
.
Proc Natl Acad Sci U S A
.
2010
;
107
(
36
):
15880
-
15885
.
36.
Brill
A
,
Fuchs
TA
,
Savchenko
AS
, et al
.
Neutrophil extracellular traps promote deep vein thrombosis in mice
.
J Thromb Haemost
.
2012
;
10
(
1
):
136
-
144
.
37.
de Boer
OJ
,
Li
X
,
Teeling
P
, et al
.
Neutrophils, neutrophil extracellular traps and interleukin-17 associate with the organisation of thrombi in acute myocardial infarction
.
Thromb Haemost
.
2013
;
109
(
2
):
290
-
297
.
38.
Noubouossie
DF
,
Whelihan
MF
,
Yu
YB
, et al
.
In vitro activation of coagulation by human neutrophil DNA and histone proteins but not neutrophil extracellular traps
.
Blood
.
2017
;
129
(
8
):
1021
-
1029
.
39.
Ma
AC
,
Kubes
P
.
Platelets, neutrophils, and neutrophil extracellular traps (NETs) in sepsis
.
J Thromb Haemost
.
2008
;
6
(
3
):
415
-
420
.
40.
Stark
K
,
Philippi
V
,
Stockhausen
S
, et al
.
Disulfide HMGB1 derived from platelets coordinates venous thrombosis in mice
.
Blood
.
2016
;
128
(
20
):
2435
-
2449
.
41.
Massberg
S
,
Grahl
L
,
von Bruehl
ML
, et al
.
Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases
.
Nat Med
.
2010
;
16
(
8
):
887
-
896
.
42.
Ryan
TAJ
,
Hooftman
A
,
Rehill
AM
, et al
.
Dimethyl fumarate and 4-octyl itaconate are anticoagulants that suppress tissue factor in macrophages via inhibition of type I interferon
.
Nat Commun
.
2023
;
14
(
1
):
3513
.
43.
Yang
X
,
Cheng
X
,
Tang
Y
, et al
.
The role of type 1 interferons in coagulation induced by gram-negative bacteria
.
Blood
.
2020
;
135
(
14
):
1087
-
1100
.
44.
Wu
C
,
Lu
W
,
Zhang
Y
, et al
.
Inflammasome activation triggers blood clotting and host death through pyroptosis
.
Immunity
.
2019
;
50
(
6
):
1401
-
1411.e4
.
45.
Swanson
KV
,
Deng
M
,
Ting
JPY
.
The NLRP3 inflammasome: molecular activation and regulation to therapeutics
.
Nat Rev Immunol
.
2019
;
19
(
8
):
477
-
489
.
46.
Gould
TJ
,
Vu
TT
,
Swystun
LL
, et al
.
Neutrophil extracellular traps promote thrombin generation through platelet-dependent and platelet-independent mechanisms
.
Arterioscler Thromb Vasc Biol
.
2014
;
34
(
9
):
1977
-
1984
.
47.
Xu
J
,
Zhang
X
,
Pelayo
R
, et al
.
Extracellular histones are major mediators of death in sepsis
.
Nat Med
.
2009
;
15
(
11
):
1318
-
1321
.
48.
Yong
J
,
Abrams
ST
,
Wang
G
,
Toh
CH
.
Cell-free histones and the cell-based model of coagulation
.
J Thromb Haemost
.
2023
;
21
(
7
):
1724
-
1736
.
49.
Kannemeier
C
,
Shibamiya
A
,
Nakazawa
F
, et al
.
Extracellular RNA constitutes a natural procoagulant cofactor in blood coagulation
.
Proc Natl Acad Sci U S A
.
2007
;
104
(
15
):
6388
-
6393
.
50.
Smith
SA
,
Gajsiewicz
JM
,
Morrissey
JH
.
Ability of polyphosphate and nucleic acids to trigger blood clotting: some observations and caveats
.
Front Med (Lausanne)
.
2018
;
5
:
107
.
51.
Beckmann
L
,
Voigtlaender
M
,
Rolling
CC
,
Schulenkorf
A
,
Bokemeyer
C
,
Langer
F
.
Myeloperoxidase has no effect on the low procoagulant activity of silica-free DNA
.
Thromb Res
.
2021
;
203
:
36
-
45
.
52.
Longstaff
C
,
Varjú
I
,
Sótonyi
P
, et al
.
Mechanical stability and fibrinolytic resistance of clots containing fibrin, DNA, and histones
.
J Biol Chem
.
2013
;
288
(
10
):
6946
-
6956
.
53.
Gould
TJ
,
Vu
TT
,
Stafford
AR
, et al
.
Cell-free DNA modulates clot structure and impairs fibrinolysis in sepsis
.
Arterioscler Thromb Vasc Biol
.
2015
;
35
(
12
):
2544
-
2553
.
54.
Saravanan
R
,
Choong
YK
,
Lim
CH
,
Lim
LM
,
Petrlova
J
,
Schmidtchen
A
.
Cell-free DNA promotes thrombin autolysis and generation of thrombin-derived C-terminal fragments
.
Front Immunol
.
2021
;
12
:
593020
.
55.
Müller
F
,
Mutch
NJ
,
Schenk
WA
, et al
.
Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo
.
Cell
.
2009
;
139
(
6
):
1143
-
1156
.
56.
Semeraro
F
,
Ammollo
CT
,
Morrissey
JH
, et al
.
Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4
.
Blood
.
2011
;
118
(
7
):
1952
-
1961
.
57.
Biswas
I
,
Panicker
SR
,
Cai
X
,
Mehta-D'souza
P
,
Rezaie
AR
.
Inorganic polyphosphate amplifies high mobility group box 1-mediated Von Willebrand factor release and platelet string formation on endothelial cells
.
Arterioscler Thromb Vasc Biol
.
2018
;
38
(
8
):
1868
-
1877
.
58.
Conway
EM
.
Polyphosphates and complement activation
.
Front Med (Lausanne)
.
2019
;
6
:
67
.
59.
Baker
CJ
,
Smith
SA
,
Morrissey
JH
.
Polyphosphate in thrombosis, hemostasis, and inflammation
.
Res Pract Thromb Haemost
.
2019
;
3
(
1
):
18
-
25
.
60.
Tsung
A
,
Tohme
S
,
Billiar
TR
.
High-mobility group box-1 in sterile inflammation
.
J Intern Med
.
2014
;
276
(
5
):
425
-
443
.
61.
Vogel
S
,
Bodenstein
R
,
Chen
Q
, et al
.
Platelet-derived HMGB1 is a critical mediator of thrombosis
.
J Clin Invest
.
2015
;
125
(
12
):
4638
-
4654
.
62.
Ito
T
,
Kawahara
K
,
Nakamura
T
, et al
.
High-mobility group box 1 protein promotes development of microvascular thrombosis in rats
.
J Thromb Haemost
.
2007
;
5
(
1
):
109
-
116
.
63.
Colicchia
M
,
Schrottmaier
WC
,
Perrella
G
, et al
.
S100A8/A9 drives the formation of procoagulant platelets through GPIbalpha
.
Blood
.
2022
;
140
(
24
):
2626
-
2643
.
64.
Wang
Y
,
Fang
C
,
Gao
H
, et al
.
Platelet-derived S100 family member myeloid-related protein-14 regulates thrombosis
.
J Clin Invest
.
2014
;
124
(
5
):
2160
-
2171
.
65.
Joshi
A
,
Schmidt
LE
,
Burnap
SA
, et al
.
Neutrophil-derived protein S100A8/A9 alters the platelet proteome in acute myocardial infarction and is associated with changes in platelet reactivity
.
Arterioscler Thromb Vasc Biol
.
2022
;
42
(
1
):
49
-
62
.
66.
Croce
K
,
Gao
H
,
Wang
Y
, et al
.
Myeloid-related protein-8/14 is critical for the biological response to vascular injury
.
Circulation
.
2009
;
120
(
5
):
427
-
436
.
67.
Manitz
MP
,
Horst
B
,
Seeliger
S
, et al
.
Loss of S100A9 (MRP14) results in reduced interleukin-8-induced CD11b surface expression, a polarized microfilament system, and diminished responsiveness to chemoattractants in vitro
.
Mol Cell Biol
.
2003
;
23
(
3
):
1034
-
1043
.
68.
Simard
JC
,
Simon
MM
,
Tessier
PA
,
Girard
D
.
Damage-associated molecular pattern S100A9 increases bactericidal activity of human neutrophils by enhancing phagocytosis
.
J Immunol
.
2011
;
186
(
6
):
3622
-
3631
.
69.
Denning
NL
,
Aziz
M
,
Gurien
SD
,
Wang
P
.
DAMPs and NETs in sepsis
.
Front Immunol
.
2019
;
10
:
2536
.
70.
Iwanaga
S
.
Biochemical principle of Limulus test for detecting bacterial endotoxins
.
Proc Jpn Acad Ser B Phys Biol Sci
.
2007
;
83
(
4
):
110
-
119
.
71.
Coban
A
,
Bornberg-Bauer
E
,
Kemena
C
.
Domain evolution of vertebrate blood coagulation cascade proteins
.
J Mol Evol
.
2022
;
90
(
6
):
418
-
428
.
72.
Doolittle
RF
. Step-by-step evolution of vertebrate blood coagulation. Cold Spring Harbor symposia on quantitative biology.
Cold Spring Harbor Laboratory Press
;
2009
:
35
-
40
.
73.
Qaddoori
Y
,
Abrams
ST
,
Mould
P
, et al
.
Extracellular histones inhibit complement activation through interacting with complement component 4
.
J Immunol
.
2018
;
200
(
12
):
4125
-
4133
.
74.
Son
M
,
Porat
A
,
He
M
, et al
.
C1q and HMGB1 reciprocally regulate human macrophage polarization
.
Blood
.
2016
;
128
(
18
):
2218
-
2228
.
75.
Foley
JH
,
Conway
EM
.
Cross talk pathways between coagulation and inflammation
.
Circ Res
.
2016
;
118
(
9
):
1392
-
1408
.
76.
Bae
JS
,
Rezaie
AR
.
Thrombin inhibits HMGB1-mediated proinflammatory signaling responses when endothelial protein C receptor is occupied by its natural ligand
.
BMB Rep
.
2013
;
46
(
11
):
544
-
549
.
77.
Das
M
,
Ithychanda
SS
,
Plow
EF
.
Histone 2B facilitates plasminogen-enhanced endothelial migration through protease-activated receptor 1 (PAR1) and protease-activated receptor 2 (PAR2)
.
Biomolecules
.
2022
;
12
(
2
):
211
.
78.
Abrams
ST
,
Zhang
N
,
Dart
C
, et al
.
Human CRP defends against the toxicity of circulating histones
.
J Immunol
.
2013
;
191
(
5
):
2495
-
2502
.
79.
Harrison
CA
,
Raftery
MJ
,
Walsh
J
, et al
.
Oxidation regulates the inflammatory properties of the murine S100 protein S100A8
.
J Biol Chem
.
1999
;
274
(
13
):
8561
-
8569
.
80.
Kazama
H
,
Ricci
JE
,
Herndon
JM
,
Hoppe
G
,
Green
DR
,
Ferguson
TA
.
Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein
.
Immunity
.
2008
;
29
(
1
):
21
-
32
.
81.
Gehrke
N
,
Mertens
C
,
Zillinger
T
, et al
.
Oxidative damage of DNA confers resistance to cytosolic nuclease TREX1 degradation and potentiates STING-dependent immune sensing
.
Immunity
.
2013
;
39
(
3
):
482
-
495
.
82.
Shichita
T
,
Ito
M
,
Morita
R
, et al
.
MAFB prevents excess inflammation after ischemic stroke by accelerating clearance of damage signals through MSR1
.
Nat Med
.
2017
;
23
(
6
):
723
-
732
.
83.
Kim
JE
,
Yoo
HJ
,
Gu
JY
,
Kim
HK
.
Histones induce the procoagulant phenotype of endothelial cells through tissue factor up-regulation and thrombomodulin down-regulation
.
PLoS One
.
2016
;
11
(
6
):
e0156763
.
84.
Gould
TJ
,
Lysov
Z
,
Swystun
LL
, et al
.
Extracellular histones increase tissue factor activity and enhance thrombin generation by human blood monocytes
.
Shock
.
2016
;
46
(
6
):
655
-
662
.
85.
Yamamichi
S
,
Fujiwara
Y
,
Kikuchi
T
,
Nishitani
M
,
Matsushita
Y
,
Hasumi
K
.
Extracellular histone induces plasma hyaluronan-binding protein (factor VII activating protease) activation in vivo
.
Biochem Biophys Res Commun
.
2011
;
409
(
3
):
483
-
488
.
86.
Barranco-Medina
S
,
Pozzi
N
,
Vogt
AD
,
Di Cera
E
.
Histone H4 promotes prothrombin autoactivation
.
J Biol Chem
.
2013
;
288
(
50
):
35749
-
35757
.
87.
Abrams
ST
,
Su
D
,
Sahraoui
Y
, et al
.
Assembly of alternative prothrombinase by extracellular histones initiates and disseminates intravascular coagulation
.
Blood
.
2021
;
137
(
1
):
103
-
114
.
88.
Michels
A
,
Albánez
S
,
Mewburn
J
, et al
.
Histones link inflammation and thrombosis through the induction of Weibel-Palade body exocytosis
.
J Thromb Haemost
.
2016
;
14
(
11
):
2274
-
2286
.
89.
Abrams
ST
,
Zhang
N
,
Manson
J
, et al
.
Circulating histones are mediators of trauma-associated lung injury
.
Am J Respir Crit Care Med
.
2013
;
187
(
2
):
160
-
169
.
90.
Semeraro
F
,
Ammollo
CT
,
Esmon
NL
,
Esmon
CT
.
Histones induce phosphatidylserine exposure and a procoagulant phenotype in human red blood cells
.
J Thromb Haemost
.
2014
;
12
(
10
):
1697
-
1702
.
91.
Locke
M
,
Longstaff
C
.
Extracellular histones inhibit fibrinolysis through noncovalent and covalent interactions with fibrin
.
Thromb Haemost
.
2021
;
121
(
4
):
464
-
476
.
92.
Shrestha
B
,
Ito
T
,
Kakuuchi
M
, et al
.
Recombinant thrombomodulin suppresses histone-induced neutrophil extracellular trap formation
.
Front Immunol
.
2019
;
10
:
2535
.
93.
Ammollo
CT
,
Semeraro
F
,
Xu
J
,
Esmon
NL
,
Esmon
CT
.
Extracellular histones increase plasma thrombin generation by impairing thrombomodulin-dependent protein C activation
.
J Thromb Haemost
.
2011
;
9
(
9
):
1795
-
1803
.
94.
Biswas
I
,
Panicker
SR
,
Cai
XS
,
Giri
H
,
Rezaie
AR
.
Extracellular histones bind vascular glycosaminoglycans and inhibit the anti-inflammatory function of antithrombin
.
Cell Physiol Biochem
.
2021
;
55
(
5
):
605
-
617
.
95.
Urban
CF
,
Ermert
D
,
Schmid
M
, et al
.
Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans
.
PLoS Pathog
.
2009
;
5
(
10
):
e1000639
.
96.
Komissarov
AA
,
Florova
G
,
Idell
S
.
Effects of extracellular DNA on plasminogen activation and fibrinolysis
.
J Biol Chem
.
2011
;
286
(
49
):
41949
-
41962
.
97.
Wildhagen
KCAA
,
García de Frutos
P
,
Reutelingsperger
CP
, et al
.
Nonanticoagulant heparin prevents histone-mediated cytotoxicity in vitro and improves survival in sepsis
.
Blood
.
2014
;
123
(
7
):
1098
-
1101
.
98.
Meara
CHO
,
Coupland
LA
,
Kordbacheh
F
, et al
.
Neutralizing the pathological effects of extracellular histones with small polyanions
.
Nat Commun
.
2020
;
11
(
1
):
6408
.
99.
Kato
T
,
Matsuura
K
.
Recombinant human soluble thrombomodulin improves mortality in patients with sepsis especially for severe coagulopathy: a retrospective study
.
Thromb J
.
2018
;
16
(
1
):
19
.
100.
Monard
C
,
Rimmelé
T
,
Ronco
C
.
Extracorporeal blood purification therapies for sepsis
.
Blood Purif
.
2019
;
47
(
suppl 3
):
2
-
15
.
You do not currently have access to this content.
Sign in via your Institution