• Complement is elevated in patients with TRALI; Fc-mediated complement activation is critical for murine antibody-mediated TRALI induction.

  • Complement-dependent murine TRALI is associated with macrophage trafficking from the lungs to the blood and with increased NET formation.

Abstract

Transfusion-related acute lung injury (TRALI) is one of the leading causes of transfusion-related fatalities and, to date, is without available therapies. Here, we investigated the role of the complement system in TRALI. Murine anti–major histocompatibility complex class I antibodies were used in TRALI mouse models, in combination with analyses of plasma samples from patients with TRALI. We found that in vitro complement activation was related to in vivo antibody-mediated TRALI induction, which was correlated with increased macrophage trafficking from the lungs to the blood in a fragment crystallizable region (Fc)-dependent manner and that this was dependent on C5. Human immunoglobulin G 1 variants of the murine TRALI-inducing antibody 34-1-2S, either unable to activate complement and/or bind to Fcγ receptors (FcγRs), revealed an essential role for the complement system, but not for FcγRs, in the onset of 34-1-2S–mediated TRALI in mice. In addition, we found high levels of complement activation in the plasma of patients with TRALI (n = 53), which correlated with elevated neutrophil extracellular trap (NET) markers. In vitro we found that NETs could be formed in a murine, 2-hit model, mimicking TRALI with lipopolysaccharide and C5a stimulation. Collectively, this reveals a critical role of Fc-mediated complement activation in TRALI, with a direct relation to macrophage trafficking from the lungs to the blood and an association with NET formation, suggesting that targeting the complement system may be an attractive therapeutic approach for combating TRALI.

1.
Silliman
CC
,
Paterson
AJ
,
Dickey
WO
, et al
.
The association of biologically active lipids with the development of transfusion-related acute lung injury: a retrospective study
.
Transfusion
.
1997
;
37
(
7
):
719
-
726
.
2.
Semple
JW
,
McVey
MJ
,
Kim
M
,
Rebetz
J
,
Kuebler
WM
,
Kapur
R
.
Targeting transfusion-related acute lung injury: the journey from basic science to novel therapies
.
Crit Care Med
.
2018
;
46
(
5
):
e452
-
e458
.
3.
Popovsky
MA
,
Moore
SB
.
Diagnostic and pathogenetic considerations in transfusion-related acute lung injury
.
Transfusion
.
1985
;
25
(
6
):
573
-
577
.
4.
Sachs
UJ
,
Hattar
K
,
Weissmann
N
, et al
.
Antibody-induced neutrophil activation as a trigger for transfusion-related acute lung injury in an ex vivo rat lung model
.
Blood
.
2006
;
107
(
3
):
1217
-
1219
.
5.
Silliman
CC
,
Voelkel
NF
,
Allard
JD
, et al
.
Plasma and lipids from stored packed red blood cells cause acute lung injury in an animal model
.
J Clin Invest
.
1998
;
101
(
7
):
1458
-
1467
.
6.
Semple
JW
,
Rebetz
J
,
Kapur
R
.
Transfusion-associated circulatory overload and transfusion-related acute lung injury
.
Blood
.
2019
;
133
(
17
):
1840
-
1853
.
7.
Vlaar
AP
,
Juffermans
NP
.
Transfusion-related acute lung injury: a clinical review
.
Lancet
.
2013
;
382
(
9896
):
984
-
994
.
8.
Vlaar
APJ
,
Toy
P
,
Fung
M
, et al
.
A consensus redefinition of transfusion-related acute lung injury
.
Transfusion
.
2019
;
59
(
7
):
2465
-
2476
.
9.
Rebetz
J
,
Semple
JW
,
Kapur
R
.
The pathogenic involvement of neutrophils in acute respiratory distress syndrome and transfusion-related acute lung injury
.
Transfus Med Hemother
.
2018
;
45
(
5
):
290
-
298
.
10.
Morsing
KSH
,
Peters
AL
,
van Buul
JD
,
Vlaar
APJ
.
The role of endothelium in the onset of antibody-mediated TRALI
.
Blood Rev
.
2018
;
32
(
1
):
1
-
7
.
11.
Tung
J-P
,
Chiaretti
S
,
Dean
MM
,
Sultana
AJ
,
Reade
MC
,
Fung
YL
.
Transfusion-related acute lung injury (TRALI): potential pathways of development, strategies for prevention and treatment, and future research directions
.
Blood Rev
.
2022
;
53
:
100926
.
12.
Zeeuw van der Laan
EAN
,
van der Velden
S
,
Porcelijn
L
,
Semple
JW
,
van der Schoot
CE
,
Kapur
R
.
Update on the pathophysiology of transfusion-related acute lung injury
.
Curr Opin Hematol
.
2020
;
27
(
6
):
386
-
391
.
13.
Kelher
MR
,
Masuno
T
,
Moore
EE
, et al
.
Plasma from stored packed red blood cells and MHC class I antibodies causes acute lung injury in a 2-event in vivo rat model
.
Blood
.
2009
;
113
(
9
):
2079
-
2087
.
14.
Jongerius
I
,
Porcelijn
L
,
van Beek
AE
, et al
.
The role of complement in transfusion-related acute lung injury
.
Transfus Med Rev
.
2019
;
33
(
4
):
236
-
242
.
15.
Strait
RT
,
Hicks
W
,
Barasa
N
, et al
.
MHC class I-specific antibody binding to nonhematopoietic cells drives complement activation to induce transfusion-related acute lung injury in mice
.
J Exp Med
.
2011
;
208
(
12
):
2525
-
2544
.
16.
Zeeuw van der Laan
EAN
,
van der Velden
S
,
Bentlage
AEH
, et al
.
Biological and structural characterization of murine TRALI antibody reveals increased Fc-mediated complement activation
.
Blood Adv
.
2020
;
4
(
16
):
3875
-
3885
.
17.
Looney
MR
,
Nguyen
JX
,
Hu
Y
,
Van Ziffle
JA
,
Lowell
CA
,
Matthay
MA
.
Platelet depletion and aspirin treatment protect mice in a two-event model of transfusion-related acute lung injury
.
J Clin Invest
.
2009
;
119
(
11
):
3450
-
3461
.
18.
Kapur
R
,
Kim
M
,
Aslam
R
, et al
.
T regulatory cells and dendritic cells protect against transfusion-related acute lung injury via IL-10
.
Blood
.
2017
;
129
(
18
):
2557
-
2569
.
19.
Kapur
R
,
Kasetty
G
,
Rebetz
J
,
Egesten
A
,
Semple
JW
.
Osteopontin mediates murine transfusion-related acute lung injury via stimulation of pulmonary neutrophil accumulation
.
Blood
.
2019
;
134
(
1
):
74
-
84
.
20.
Kleinman
S
,
Caulfield
T
,
Chan
P
, et al
.
Toward an understanding of transfusion-related acute lung injury: statement of a consensus panel
.
Transfusion
.
2004
;
44
(
12
):
1774
-
1789
.
21.
Van Osch
TLJ
,
Oosterhoff
JJ
,
Bentlage
AEH
, et al
.
Fc galactosylation of anti-platelet human IgG1 alloantibodies enhances complement activation on platelets
.
Haematologica
.
2022
;
107
(
10
):
2432
-
2444
.
22.
van Osch
TLJ
,
Nouta
J
,
Derksen
NIL
, et al
.
Fc galactosylation promotes hexamerization of human IgG1, leading to enhanced classical complement activation
.
J Immunol
.
2021
;
207
(
6
):
1545
-
1554
.
23.
He
R
,
Li
L
,
Kong
Y
, et al
.
Preventing murine transfusion-related acute lung injury by expansion of CD4(+) CD25(+) FoxP3(+) Tregs using IL-2/anti-IL-2 complexes
.
Transfusion
.
2019
;
59
(
2
):
534
-
544
.
24.
Kapur
R
,
Kim
M
,
Shanmugabhavananthan
S
,
Liu
J
,
Li
Y
,
Semple
JW
.
C-reactive protein enhances murine antibody-mediated transfusion-related acute lung injury
.
Blood
.
2015
;
126
(
25
):
2747
-
2751
.
25.
Treffers
LW
,
Ten Broeke
T
,
Rosner
T
, et al
.
IgA-mediated killing of tumor cells by neutrophils is enhanced by CD47-SIRPalpha checkpoint inhibition
.
Cancer Immunol Res
.
2020
;
8
(
1
):
120
-
130
.
26.
Caudrillier
A
,
Kessenbrock
K
,
Gilliss
BM
, et al
.
Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury
.
J Clin Invest
.
2012
;
122
(
7
):
2661
-
2671
.
27.
Wouters
D
,
Wiessenberg
HD
,
Hart
M
, et al
.
Complexes between C1q and C3 or C4: novel and specific markers for classical complement pathway activation
.
J Immunol Methods
.
2005
;
298
(
1-2
):
35
-
45
.
28.
Wang
G
,
de Jong
RN
,
van den Bremer
ETJ
, et al
.
Molecular basis of assembly and activation of complement component C1 in complex with immunoglobulin G1 and antigen
.
Mol Cell
.
2016
;
63
(
1
):
135
-
145
.
29.
Temming
AR
,
Bentlage
AEH
,
de Taeye
SW
, et al
.
Cross-reactivity of mouse IgG subclasses to human Fc gamma receptors: antibody deglycosylation only eliminates IgG2b binding
.
Mol Immunol
.
2020
;
127
:
79
-
86
.
30.
Hezareh
M
,
Hessell
AJ
,
Jensen
RC
,
van de Winkel
JG
,
Parren
PW
.
Effector function activities of a panel of mutants of a broadly neutralizing antibody against human immunodeficiency virus type 1
.
J Virol
.
2001
;
75
(
24
):
12161
-
12168
.
31.
Brinkhaus
M
,
Douwes
RGJ
,
Bentlage
AEH
, et al
.
Glycine 236 in the lower hinge region of human IgG1 differentiates FcgammaR from complement effector function
.
J Immunol
.
2020
;
205
(
12
):
3456
-
3467
.
32.
Lo
M
,
Kim
HS
,
Tong
RK
, et al
.
Effector-attenuating substitutions that maintain antibody stability and reduce toxicity in mice
.
J Biol Chem
.
2017
;
292
(
9
):
3900
-
3908
.
33.
Wang
L
,
Wu
T
,
Yan
S
, et al
.
M1-polarized alveolar macrophages are crucial in a mouse model of transfusion-related acute lung injury
.
Transfusion
.
2020
;
60
(
2
):
303
-
316
.
34.
Guo
R-F
,
Ward
PA
.
Mediators and regulation of neutrophil accumulation in inflammatory responses in lung: insights from the IgG immune complex model
.
Free Radic Biol Med
.
2002
;
33
(
3
):
303
-
310
.
35.
Moriconi
A
,
Cunha
TM
,
Souza
GR
, et al
.
Targeting the minor pocket of C5aR for the rational design of an oral allosteric inhibitor for inflammatory and neuropathic pain relief
.
Proc Natl Acad Sci U S A
.
2014
;
111
(
47
):
16937
-
16942
.
36.
Ricklin
D
,
Hajishengallis
G
,
Yang
K
,
Lambris
JD
.
Complement: a key system for immune surveillance and homeostasis
.
Nat Immunol
.
2010
;
11
(
9
):
785
-
797
.
37.
Pouw
RB
,
Ricklin
D
.
Tipping the balance: intricate roles of the complement system in disease and therapy
.
Semin Immunopathol
.
2021
;
43
(
6
):
757
-
771
.
38.
Looney
MR
,
Su
X
,
Van Ziffle
JA
,
Lowell
CA
,
Matthay
MA
.
Neutrophils and their Fc gamma receptors are essential in a mouse model of transfusion-related acute lung injury
.
J Clin Invest
.
2006
;
116
(
6
):
1615
-
1623
.
39.
El Mdawar
MB
,
Maitre
B
,
Magnenat
S
, et al
.
Platelet FcgammaRIIA-induced serotonin release exacerbates the severity of transfusion-related acute lung injury in mice
.
Blood Adv
.
2021
;
5
(
23
):
4817
-
4830
.
40.
Bayat
B
,
Tjahjono
Y
,
Sydykov
A
, et al
.
Anti-human neutrophil antigen-3a induced transfusion-related acute lung injury in mice by direct disturbance of lung endothelial cells
.
Arterioscler Thromb Vasc Biol
.
2013
;
33
(
11
):
2538
-
2548
.
41.
Kastl
SP
,
Speidl
WS
,
Kaun
C
, et al
.
In human macrophages the complement component C5a induces the expression of oncostatin M via AP-1 activation
.
Arterioscler Thromb Vasc Biol
.
2008
;
28
(
3
):
498
-
503
.
42.
Xie
L
,
Chang
L
,
Guan
Y
,
Wang
X
.
C-reactive protein augments interleukin-8 secretion in human peripheral blood monocytes
.
J Cardiovasc Pharmacol
.
2005
;
46
(
5
):
690
-
696
.
43.
Davies
LC
,
Jenkins
SJ
,
Allen
JE
,
Taylor
PR
.
Tissue-resident macrophages
.
Nat Immunol
.
2013
;
14
(
10
):
986
-
995
.
44.
Perez-Figueroa
E
,
Alvarez-Carrasco
P
,
Ortega
E
,
Maldonado-Bernal
C
.
Neutrophils: many ways to die
.
Front Immunol
.
2021
;
12
:
631821
.
45.
Thomas
GM
,
Carbo
C
,
Curtis
BR
, et al
.
Extracellular DNA traps are associated with the pathogenesis of TRALI in humans and mice
.
Blood
.
2012
;
119
(
26
):
6335
-
6343
.
46.
Ortiz-Espinosa
S
,
Morales
X
,
Senent
Y
, et al
.
Complement C5a induces the formation of neutrophil extracellular traps by myeloid-derived suppressor cells to promote metastasis
.
Cancer Lett
.
2022
;
529
:
70
-
84
.
47.
Keir
AK
,
McPhee
AJ
,
Andersen
CC
,
Stark
MJ
.
Plasma cytokines and markers of endothelial activation increase after packed red blood cell transfusion in the preterm infant
.
Pediatr Res
.
2013
;
73
(
1
):
75
-
79
.
You do not currently have access to this content.
Sign in via your Institution