Abstract
Recent studies have shown that several miRNA are differentially expressed in hematopoietic stem cells (HSC) and involved in regulating self-renewal, pointing to a new axis of epigenetic control of HSC function. Murine studies have documented a role for miR-125a in regulating HSC as miR-125a enforced expression augments self-renewal. We examined whether these attributes are evolutionarily conserved within human hematopoiesis. Lentiviral vectors over-expressing miR-125a (miR-125OE) were developed and HSC function was investigated using xenotransplantation of CD34+ CD38- human umbilical cord blood (CB) hematopoietic stem and progenitor cells (HSPCs). miR-125OE resulted in significantly increased human bone marrow (BM) chimerism at 12 and 24 weeks post-transplantation and splenomegaly. Within enlarged spleens, there were significantly increased proportions of CD34+CD19+CD10+CD20-B lymphoid cells suggesting a partial B cell differentiation block at the pro-B cell stage. In the BM, CD41+ megakaryocytes, GlyA+ erythroid and CD3+ T cell populations were significantly expanded. Within the primitive compartment, multi-lymphoid progenitors (MLP) were massively expanded by 12 weeks, followed by a combined reduction of immuno-phenotypic HSC and multi-potent progenitors (MPP) by 24 weeks. Given this loss of immuno-phenotypic HSC, we wondered whether stem cell function was compromised in vivo. Secondary transplantation with limiting dilution (LDA) revealed that stem cell frequencies were increased by 4.5 fold in miR-125OE recipients. Using lentivirus sponge-mediated inhibition of miR-125 (miR-125KD) in CD34+CD38-human CB, we were able to directly link these effects to miR-125: B cells increased at the expense of T cells; immuno-phenotypic HSC increased with a concomitant loss of MLP; and functional HSC were decreased by 2.5 fold using secondary LDA assays. Together, these data strongly suggest that miR-125a expression levels regulate human HSC self-renewal and lineage commitment.
Since HSC frequency increased so substantially upon miR-125OE, we asked whether more committed cell populations might also be endowed with enhanced self-renewal. Highly purified populations of HSC, MPP and MLP and CD34+CD38+ committed progenitors were transduced and transplanted cells into xenografts. Unexpectedly, miR-125OE transduced CD34+CD38+ progenitors produced a substantial graft after 12 weeks. Control transduced CD34+CD38+ cells did not engraft and only control transduced HSC generated a disseminating graft in recipient mice. miR-125OE transduced HSC and MPP generated robust engraftment, while MLP did not. In all cases, xenografts generated by CD34+CD38+ and MPP transduced with miR-125OE showed multi-lineage repopulation. Moreover, the miR-125OE grafts from CD34+CD38+ and MPP recipients were durable as secondary transplantation generated multi-lineage grafts for at least 20 weeks in 5/7 and 6/10 recipients, respectively; no control transduced groups generated secondary grafts. Thus, the enhancement of self-renewal by enforced expression of miR-125a occurs not only in HSC, but also in MPP and to an as yet unidentified subpopulation within the CD34+38+ committed progenitor compartment.
Using protein mass spectrometry, we identified and validated a miR-125a target network in CD34+ CB that normally functions to restrain self-renewal in more committed progenitors. Together, our data suggest that increased miR-125a expression can endow an HSC-like program upon a selected set of non-self-renewing hematopoietic progenitors. Our findings offer the innovative potential to use MPP with enhanced self-renewal to augment limited sources of HSC to improve clinical outcomes.
No relevant conflicts of interest to declare.
Author notes
Asterisk with author names denotes non-ASH members.