Abstract
Recent studies have identified small molecule inhibitors of the paracaspase activity of MALT1, a protease and scaffolding protein involved in the B-cell receptor (BCR) signaling pathway, that are effective killing lymphomas in vitro and in vivo in xenograft models of Activated B-cell like Diffuse Large B-cell Lymphoma (ABC-DLBCL). ABC-DLBCL is characterized by constitutive NF-κB activity. This activation has been attributed to mutations in various protein components of the B-cell receptor (BCR) as well as Toll-like receptor (TLR) pathways. However, not all ABC-DLBCL cell lines and primary patient samples were equally sensitive to MALT1 inhibitors in vitro.
In order to discover genetic modifiers of response to MALT1 inhibition we used an shRNA library screening approach. MALT1 inhibition sensitive cell line HBL-1 was infected with DECIPHER barcoded shRNA library Module 1 and cells were treated with vehicle or 300 nM of MALT1 inhibitor MI-2 for 22 days. At this time cells were harvested and genomic DNA extracted. PCR was used to amplify barcodes and gel purified bands were extracted and sequenced. Cellecta's Deconvoluter software was used to quantify the number of reads per shRNA, reads were normalized to total number of reads and fold change between vehicle and MI-2 treated cells was calculated. Among the top positively and negatively enriched hairpins, we found a significant number of genes involved in the BCR pathway including: positively regulated shRNAs against TNFAIP3 and FOXO1 and negatively regulated hairpins against BTK, CD79B and PI3K genes PIK3C2A and PIK3C2D. Interestingly, TNFAIP3 and FOXO1 are negative regulators of the BCR pathway while BTK, CD79B and PI3K genes are positive regulators of this pathway.
In order to validate these results and given the abundance of inhibitors of different proteins in the BCR pathway, we run a focused combination screen using MALT1 inhibitor MI-2 and inhibitors against other proteins in the pathway in 4 MALT1 sensitive cell lines. Combinations with PI3K inhibitors were most synergistic (combination index (CI) ranging 0.12-0.67), while BTK and PKC inhibitors showed an additive effect (CI ranging 0.7-0.9). These results were confirmed using a second MALT1 inhibitor, mepazine. In order to characterize the molecular mechanism by which MALT1 inhibition cooperates with PI3K, we focused on the FDA approved drug Idelalisib. In vitro treatment of cells with MI-2 and Idelalisib showed that effect on cell growth was a combination of decreased proliferation and increased apoptosis. Moreover, we found a decrease in AKT phosphorylation followed by a decrease in FOXO1 T24 phosphorylation and an accumulation of FOXO1 protein. This result correlates with our finding that FOXO1 knockdown favors MALT1 inhibition resistance. In vivo treatment of TMD8 xenografts with a combination of MI-2 and Idelalisib showed a stronger effect than either drug used as a single agent or vehicle, confirming the increased efficacy of the combination over either drug alone.
In summary, we have used an shRNA library screening in order to determine which proteins and pathways cooperate with MALT1 inhibition to kill ABC-DLBCL and to evaluate combinatorial treatments in an unbiased manner. This same approach has pointed out TNFAIP3 and FOXO1 as possible biomarkers of response. This is especially interesting since these two proteins are mutated in a proportion of ABC-DLBCL patients and could affect response to treatment not only against MALT1 inhibitors but potentially any BCR targeted therapy.
Melnick:Janssen: Research Funding.
Author notes
Asterisk with author names denotes non-ASH members.