Abstract
Balanced chromosomal rearrangements leading to fusion genes on the molecular level define distinct biological subsets in AML. The four balanced rearrangements (t(15;17), t(8;21), inv(16), and 11q23/MLL) show a close correlation to cytomorphology and gene expression patterns. We here focused on seven AML with t(8;16)(p11;p13). This translocation is rare (7/3515 cases in own cohort). It is more frequently found in therapy-related AML than in de novo AML (3/258 t-AML, and 4/3287 de novo, p=0.0003). Cytomorphologically, AML with t(8;16) is characterized by striking features: In all 7 cases the positivity for myeloperoxidase on bone marrow smears was >70% and intriguingly, in parallel >80% of blast cells stained strongly positive for non-specific esterase (NSE) in all cases. Thus, these cases can not be classified according to FAB categories. These data suggest that AML-t(8;16) arise from a very early stem cell with both myeloid and monoblastic potential. Furthermore, we detected erythrophagocytosis in 6/7 cases that was described as specific feature in AML with t(8;16). Four pts. had chromosomal aberrations in addition to t(8;16), 3 of these were t-AML all showing aberrations of 7q. Survival was poor with 0, 1, 1, 2, 20 and 18+ (after alloBMT) mo., one lost to follow-up, respectively. We then analyzed gene expression patterns in 4 cases (Affymetrix U133A+B). First we compared t(8;16) AML with 46 AML FAB M1, 41 M4, 9 M5a, and 16 M5b, all with normal karyotype.
Hierachical clustering and principal component analyses (PCA) revealed that t(8;16) AML were intercalating with FAB M4 and M5b and did not cluster near to M1. Thus, monocytic characteristics influence the gene expression pattern stronger than myeloid. Next we compared the t(8;16) AML with the 4 other balanced subtypes according to the WHO classification (t(15;17): 43; t(8;21): 40; inv(16): 49; 11q23/MLL-rearrangements: 50). Using support vector machines the overall accuracy for correct subgroup assignment was 97.3% (10-fold CV), and 96.8% (2/3 training and 1/3 test set, 100 runs). In PCA and hierarchical cluster analysis the t(8;16) were grouped in the vicinity of the 11q23 cases. However, in a pairwise comparison these two subgroups could be discriminated with an accuracy of 94.4% (10-fold CV). Genes with a specific expression in AML-t(8;16) were further investigated in pathway analyses (Ingenuity). 15 of the top 100 genes associated with AML-t(8;16) were involved in the CMYC-pathway with up regulation of BCOR, COXB5, CDK10, FLI1, HNRPA2B1, NSEP1, PDIP38, RAD50, SUPT5H, TLR2 and USP33, and down regulation of ERG, GATA2, NCOR2 and RPS20. CEBP beta, known to play a role in myelomonocytic differentiation, was also up-regulated in t(8;16)-AML. Ten additional genes out of the 100 top differentially expressed genes were also involved in this pathway with up-regulation of DDB2, HIST1H3D, NSAP1, PTPNS1, RAN, USP4, TRIM8, ZNF278 and down regulation of KIT and MBD2. In conclusion, AML with t(8;16) is a specific subtype of AML with unique characteristics in morphology and gene expression patterns. It is more frequently found in t-AML, outcome is inferior in comparison to other AML with balanced translocations. Due to its unique features, it is a candidate for inclusion into the WHO classification as a specific entity.
Author notes
Corresponding author
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal