Abstract
The rare CD133+ stem cell population contains both hematopoietic and endothelial progenitors. Successful ex-vivo expansion of this multipotent population would therefore be of great benefit in many clinical settings including stem cell transplantation and gene therapy. We developed a cell culture system containing the recombinant human cytokines vascular endothelial growth factor (VEGF), FLT3 ligand (FLT3L) and stem cell growth factor (SCGF) for ex-vivo expansion of purified human CD133+ stem cells obtained from leukapheresis products from patients pre-treated with G-CSF.
FACS analysis, colony assays and NOD-SCID transplantation studies were performed to monitor stem cell and endothelial phenotype in-vitro and in-vivo. Cultivation with VEGF, FLT3L and SCGF induced a mean 2200-fold increase of total cell counts in 5 weeks. FACS analysis revealed persistence of 6–15% CD133+ stem cells indicating proliferation and survival of primitive hematopoietic stem cells. 5–6% of the proliferating cells expressed the endothelial markers CD144 (VE-Cadherin) and von-Willebrand factor (vWF). Ex-vivo expanded stem cells could be differentiated into adherent endothelial cells after withdrawal of SCGF and FLT3L allowing generation of large numbers of endothelial cells. Colony-assays showed an increase of hematopoietic and endothelial colonies after 5 weeks of ex-vivo expansion indicating simultaneous proliferation of hematopoietic and endothelial precursors under the established culture conditions (CFU-E 60-fold, CFU-GEMM 48-fold, CFU-GM 59-fold, CFU-G 99-fold, CFU-M 1356-fold and CFU-EC 1843-fold).
To assess in-vivo functionality, hematopoietic stem cells expanded ex-vivo for 7, 14, 21 and 32 days were transplanted into sublethally irradiated NOD-SCID mice. For each expansion period, the mean percentage of anti-human CD45 positive bone marrow cells 3 months post-transplantation was 11, 3, 3 and 1%, respectively. Human CD45+ cells for each set of experiments contained a mean of 15, 26, 8 and 32% T-cells (CD3+), 9, 0, 7 and 21% B-cells (CD19+), 24, 2, 2 and 11% monocytes (CD14+), 21, 3, 1 and 12% granulocytes (CD33+) and 19, 37, 44 and 24% stem cells (CD34+) (d7 (n=5), d14 (n=4), d21 (n=7) and d32 (n=6) respectively).
Our experiments showed multilineage engraftment of human stem cells expanded for more than 4 weeks ex-vivo. Therefore our culture system provides a tool to generate large numbers of human stem and endothelial cells for clinical purposes.
Author notes
Corresponding author
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal